O ponto M, representado abaixo, é extremidade de um arco trigonométrico de 2.040°.
Determine a medida X associada ao ponto M:
a) com
isto é, na 1° volta do sentido positivo
b) com
isto é, na 2° volta do sentido positivo
c) com
isto é, na 3° volta do sentido positivo
d) com
iso é,na 1° volta do sentido negativo
Soluções para a tarefa
Arco trigonométrico
Um círculo possui em “uma volta” um ângulo de 360°. Dando “mais voltas” no mesmo círculo, podemos obter ângulos maiores – que é o que trabalharemos aqui. Usarei circunferência como sinônimo de círculo, que é o termo mais usado.
Antes de começar, é importante ter em mente que um círculo/uma circunferência pode ser dividida em diversas partes. A forma mais convencional é a divisão da circunferência em 4 partes, chamadas quadrantes. Adicionei uma representação gráfica em anexo, para que ficasse mais clara a visualização dos quadrantes.
As “voltas comuns” na circunferência crescem com os quadrantes: iniciam no primeiro quadrante e vão progredindo, repetindo as voltas nos quadrantes quando necessário, criando um ciclo sem fim. Pensando em um “ciclo sem fim”, podemos determinar os limites (início e fim) de cada quadrante como sendo:
- 1° Quadrante: de 0° até 90°; de 360° até 450°; de 720° até 810°; de 1170° até 1260°; ...
- 2° Quadrante: de 90° até 180°; de 450° até 540°; de 810° até 900°; de 1260° até 1350°; ...
- 3° Quadrante: de 180° até 270°; de 540° até 630°; de 900° até 990°; de 1350° até 1440°; ...
- 4° Quadrante: de 270° até 360°; de 630° até 720°; de 1080° até 1170°; de 1440° até 1530°; ...
Questão A
Para saber o valor da posição de M, antes temos que conhecer a quantidade de voltas que foram dadas - para isso, podemos dividir 2040 por 360. O valor inteiro representará a quantidade de voltas inteiras – ou seja, 360°. Se subtrair de 2040° a quantidade de voltas inteiras em graus, teremos a resposta da A, pois teremos a medida de M, que está no 3° quadrante e tem algo entre 180° e 270°. Vamos aos cálculos.
Fazendo a subtração, como supramencionado, teremos:
A resposta é 240°.
Questão B
Para encontrar a resposta da B e da C, basta somarmos a 240 o resultado de 360 vezes a quantidade de voltas feitas menos um – isso se dá por causa da posição de M, que não permite que seja possível obter múltiplos de 360°. No caso da B foram feitas duas voltas, logo:
A resposta é 600°.
Questão C
Nesse caso foram 3 voltas, logo:
A resposta é 960°.
Questão D
Nesse caso, não teremos uma “volta comum”, pois iremos “regredir nos quadrantes”, utilizando de um sentido decrescente. Nesse caso, temos que subtrair 240° de 360° para que encontremos a resposta. Teremos:
A resposta é 120°.
Qualquer dúvida, entre em contato.