O perímetro do Triângulo isósceles da figura é igual a 64m e o cos alfa= 7/25
Calcule: A) A e B
B) Determine a área do Triângulo
Anexos:
![](https://pt-static.z-dn.net/files/d1d/0cf16e6e7abf5d98e967ab48dee807f4.jpg)
AffonsoPaulinho:
A imagem está um pouco ruim, pode digitar os valores?
Soluções para a tarefa
Respondido por
6
a) Como a gente um só lado diferente e dois iguais, utilizaremos a seguinte fórmula:
Sabendo que![cos(a) = \frac{7}{25} cos(a) = \frac{7}{25}](https://tex.z-dn.net/?f=cos%28a%29+%3D+%5Cfrac%7B7%7D%7B25%7D)
![sen^2(a)+cos^2(a)=1 sen^2(a)+cos^2(a)=1](https://tex.z-dn.net/?f=sen%5E2%28a%29%2Bcos%5E2%28a%29%3D1)
![sen^2(a) = \frac{(625-49)}{625} sen^2(a) = \frac{(625-49)}{625}](https://tex.z-dn.net/?f=sen%5E2%28a%29+%3D+%5Cfrac%7B%28625-49%29%7D%7B625%7D)
![sen(a) = \frac{\sqrt576}{625} = \frac{24}{25} sen(a) = \frac{\sqrt576}{625} = \frac{24}{25}](https://tex.z-dn.net/?f=sen%28a%29+%3D+%5Cfrac%7B%5Csqrt576%7D%7B625%7D+%3D+%5Cfrac%7B24%7D%7B25%7D)
![cos(a) = \frac{a}{2b} = \frac{7}{25} cos(a) = \frac{a}{2b} = \frac{7}{25}](https://tex.z-dn.net/?f=cos%28a%29+%3D+%5Cfrac%7Ba%7D%7B2b%7D+%3D+%5Cfrac%7B7%7D%7B25%7D)
Agora faremos um sistema utilizando a primeira fórmula que mencionei:
=0}} \right. [/tex]
![b= \frac{-1600}{-64} = 25 b= \frac{-1600}{-64} = 25](https://tex.z-dn.net/?f=b%3D+%5Cfrac%7B-1600%7D%7B-64%7D+%3D+25)
![a +2b = 64
a + 2(25) = 64
a + 50 = 64
a = 14 a +2b = 64
a + 2(25) = 64
a + 50 = 64
a = 14](https://tex.z-dn.net/?f=a+%2B2b+%3D+64%0A%0Aa+%2B+2%2825%29+%3D+64%0A%0Aa+%2B+50+%3D+64%0A%0Aa+%3D+14)
Área do Triângulo
Primeiro temos que encontrar a altura:
![sen(a) = \frac{h}{b} = \frac{24}{25} sen(a) = \frac{h}{b} = \frac{24}{25}](https://tex.z-dn.net/?f=sen%28a%29+%3D+%5Cfrac%7Bh%7D%7Bb%7D+%3D+%5Cfrac%7B24%7D%7B25%7D)
![h = \frac{24b}{25} = 24.\frac{25}{25} = 24m h = \frac{24b}{25} = 24.\frac{25}{25} = 24m](https://tex.z-dn.net/?f=h+%3D+%5Cfrac%7B24b%7D%7B25%7D+%3D+24.%5Cfrac%7B25%7D%7B25%7D+%3D+24m)
Agora que encontramos a altura, falta só a área:
![S = \frac{a.h}{2} = \ \frac{14.24}{2} = \frac{14.12}{1} = 168m^2 S = \frac{a.h}{2} = \ \frac{14.24}{2} = \frac{14.12}{1} = 168m^2](https://tex.z-dn.net/?f=S+%3D+%5Cfrac%7Ba.h%7D%7B2%7D+%3D+%5C+%5Cfrac%7B14.24%7D%7B2%7D+%3D+%5Cfrac%7B14.12%7D%7B1%7D+%3D+168m%5E2)
Sabendo que
Agora faremos um sistema utilizando a primeira fórmula que mencionei:
Área do Triângulo
Primeiro temos que encontrar a altura:
Agora que encontramos a altura, falta só a área:
Perguntas interessantes
Português,
11 meses atrás
Inglês,
11 meses atrás
Pedagogia,
11 meses atrás
Química,
1 ano atrás
Português,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás