O número de unidades produzidas em (y) de um produto, durante um mês, é função do número de funcionários empregados (x), de acordo com a relação: y= 50√x. Se 49 funcionários estão empregados, podemos afirmar que:
a) o acréscimo de um funcionário aumenta a produção mensal em 50 unidades.
b) o acréscimo em 15 funcionários aumenta a produção mensal em 75 unidades
c) o acréscimo de 32 funcionários aumenta a produção mensal em 100 unidades
d) o acréscimo de 51 funcionários aumenta a produção mensal em 120 unidades
e) n.d.a
Soluções para a tarefa
Respondido por
2
y = 50√x
y = 50.√49
y = 50.7
y = 350
a) acréscimo de 1: y = 50.√50 ⇒ y ≈ 50.7 = 350 (falso)
b) acréscimo de 15: y = 50.√64 ⇒ y = 50.8 = 400 (falso)
c) acréscimo 32: y = 50.√81 ⇒ y = 50.9 = 450 (verdadeiro)
d) acréscimo de 51: y = 50.√100 ⇒ y = 50.10 = 500 (falso)
Resposta: Alternativa D)
Espero ter ajudado.
y = 50.√49
y = 50.7
y = 350
a) acréscimo de 1: y = 50.√50 ⇒ y ≈ 50.7 = 350 (falso)
b) acréscimo de 15: y = 50.√64 ⇒ y = 50.8 = 400 (falso)
c) acréscimo 32: y = 50.√81 ⇒ y = 50.9 = 450 (verdadeiro)
d) acréscimo de 51: y = 50.√100 ⇒ y = 50.10 = 500 (falso)
Resposta: Alternativa D)
Espero ter ajudado.
Perguntas interessantes
Matemática,
10 meses atrás
Biologia,
10 meses atrás
Português,
10 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás
Inglês,
1 ano atrás