o número de termos de uma PA, cuja razão é 9 ,o primeiro termo é 4 e o último 58 ,é.
Soluções para a tarefa
Respondido por
85
Olá!
Primeiramente, vamos interpretar o enunciado.
Certa sequência de números iniciada em 4 tomada de 9 em 9 números é terminada em 58. Devemos desenhar a sequência passo a passo para descobrirmos quantos são os termos dessa sequência:
4 + 9 = 13
13 + 9 = 22
22 + 9 = 31
31 + 9 = 40
40 + 9 = 49
49 + 9 = 58
Como podemos ver, os termos dessa sequência são: 4, 13, 22, 31, 40, 49 e 58.
Portanto, o número de termos desta Progressão Aritimética - PA é 7.
Espero ter ajudado!
Respondido por
2
Resposta:
aN = 7
Explicação passo-a-passo:
N = a1 + (n - 1) × r
aN = último termo
a1 = primeiro termo
n = quantidade de termos
r = razão
Sendo assim:
58 = 4 + (n - 1) × 9
58 = 4 + 9n -9
58 = -5 + 9n
-9n = -5 -58
-9n = -63 (-1)
9n = 63
n = 7
O número de termos da P.A. é igual a 7
Perguntas interessantes