o montante de vendas de um supermercado ao Longo determinado mes è por uma função cuja lei è y= X²- 15x+229, em
4 2 4 .
que y representa quantos mil reias o supermercado vendeu por dia , e X representa o dia do mês.
A) Quantos mil reais esse supermercado vendeu no Primeiro dia ?
B)Qual foi o menor valor vendido ao Longo do mês ? em que dia do mês isso aconteceu ?
Soluções para a tarefa
Resposta:
a) 50 mil
B) dia 15 com mil reais
Explicação passo-a-passo:
Bom, vamos lá
A) considerando a equação y= - +
tiramos o mmc, que será 4, dividimos pelo denominador e multiplicamos pelo numerador :
y =
Considerando que o x representa os dias e que ele pede o primeiro dia do mês, temos que:
y =
y =
Y = 50
o valor é expresso em mil, portanto
Y = 50 mil reais
B) Neste caso ele quer saber o menor valor vendido ao longo do mês, se analisarmos a equação, podemos observar que o número de dias é elevado ao quadrado e subtraído por 30 vezes ele mesmo, portanto:
Temos que pegar o maior número que multiplicado por 30 seja maior que seu quadrado:
Portanto esse número é o 15:
Y =
Y =
Y = 1
Portanto a sua menor venda foi no dia 15 com apenas 1mil reais
Espero ter ajudado!!