O momento angular de um volante com um momento de inércia de 0,16 kg ⋅ em relação ao eixo central diminui de 4,6 para 0,7 kg ⋅ / s em 3,13 s. Suponha uma aceleração angular seja constante. Qual é o trabalho realizado sobre o volante? Expresse sua resposta em J.
Soluções para a tarefa
O momento angular é dado pela equação onde
é o momento angular, é o momento de inércia e é a velocidade angular.
O teorema do Trabalho e Energia nos diz que o trabalho é justamente a variação da energia cinética de um corpo. Neste caso, o volante possui apenas energia cinética de rotação. O trabalho exercido pelo torque que atuou no mesmo será justamente a variação da energia cinética de rotação do volante.
Temos que a equação da energia cinética de rotação é
Veja que há similaridade ente as equações. Se nós obtermos a velocidade angular antes e depois do volante ter seu momento angular diminuído, nós podemos calcular a energia cinética de rotação em ambos os momentos e consequentemente o trabalho realizado.
Antes do trabalho ser realizado temos:
radianos por segundo.
Energia cinética de rotação antes do trabalho ser realizado:
Joules
Depois do trabalho ser realizado temos:
radianos por segundo.
Energia cinética de rotação depois do trabalho ser realizado:
Joules
Por fim podemos calcular o trabalho realizado. Para isso basta tomar a diferença entre a energia cinética de rotação depois e antes da realização do trabalho:
Joules
Este foi o trabalho realizado. Ele é negativo justamente porque a energia cinética de rotação diminuiu.