O lucro L de uma microempresa, em função do número de funcionários n que nela trabalham,
é dado, em milhares de reais, pela fórmula L (n) = 36n − n²
. Com base nessas informações,
qual o número de trabalhados ideal para que o lucro dessa microempresa seja máximo?
Soluções para a tarefa
Respondido por
21
O número de trabalhados ideal para que o lucro dessa microempresa seja máximo é: 18.
O lucro é dado por uma função do 2° grau.
Assim, para acharmos o número (n) de trabalhadores para que o lucro seja máximo, temos que encontrar o x do vértice dessa função.
L(n) = - n² + 36n
[a = - 1 , b = 36 , c = 0]
O Xv é dado por:
Xv = - b
2a
Xv = - 36
2.(-1)
Xv = - 36
- 2
Xv = 18
Logo, n = 18.
Quando o número de funcionários por 18, a microempresa terá o maior lucro possível. No caso, será:
L(n) = 36n - n²
L(18) = 36.18 - 18²
L(18) = 648 - 324
L(18) = 324
Respondido por
8
Resposta:
6
Explicação passo-a-passo:
Yv =(-delta/4a)
Yv= -36^2/4.3
Yv= -1296/-12
Yv= 108 mil reais (lucro máximo)
Xv= -b/2a
Xv= -36/2.-3
Xv= -36/-6
Xv= 6
Perguntas interessantes