O lado menor de um retângulo mede 10 cm e cada
diagonal mede 40 cm. Distante 8 cm de cada Vértice
desse retângulo, marcam-se sobre as diagonais quatro
pontos que são vértices de um novo retângulo. Sabendo
que as diagonais de um retângulo se cruzam no ponto
médio, determine a medida do lado menor do novo
retângulo?
Soluções para a tarefa
Respondido por
1
''O lado menor de um retângulo mede 10 cm e cada
diagonal mede 40 cm''
Até aqui, a gente já pode achar o lado maior do triângulo por pitágoras.
40² = L²+10²
L²=1600-100
L² = 15.100
L = 10√15
''Distante 8 cm de cada Vértice
desse retângulo, marcam-se sobre as diagonais quatro
pontos que são vértices de um novo retângulo. Sabendo
que as diagonais de um retângulo se cruzam no ponto
médio ''
Como os centros se coincidem e saber que a metade da diagonal dos retângulos maiores e menores equivalem ao lado de um triângulo, a gente pode fazer por semelhança.
Seja o lado do triângulo menor l :
l = D/2 - 8
l= 20-8
l=12
Seja a base do triângulo menor ( lado menor do retângulo menor ) igual x , por semelhança temos :
x/10 = 12/20
x/10=6/10
x=6 cm
diagonal mede 40 cm''
Até aqui, a gente já pode achar o lado maior do triângulo por pitágoras.
40² = L²+10²
L²=1600-100
L² = 15.100
L = 10√15
''Distante 8 cm de cada Vértice
desse retângulo, marcam-se sobre as diagonais quatro
pontos que são vértices de um novo retângulo. Sabendo
que as diagonais de um retângulo se cruzam no ponto
médio ''
Como os centros se coincidem e saber que a metade da diagonal dos retângulos maiores e menores equivalem ao lado de um triângulo, a gente pode fazer por semelhança.
Seja o lado do triângulo menor l :
l = D/2 - 8
l= 20-8
l=12
Seja a base do triângulo menor ( lado menor do retângulo menor ) igual x , por semelhança temos :
x/10 = 12/20
x/10=6/10
x=6 cm
Perguntas interessantes