O Jardineiro com intenção de aproveitar um pedaço triangular de terreno fez um canteiro composto por folhagens e flores onde as divisões são todas paralelas à base.
Sendo assim quais são as medidas x e y dos canteiros de folhagens e flores respectivamente?
(Com os cálculos por favor)
Anexos:
gui19assis:
Oiii
Soluções para a tarefa
Respondido por
723
Resposta:
Explicação passo-a-passo:
x/25 = 10/15
x= 250/15
25/y=15/30
25/y=1/2
y=50
Respondido por
429
O lado x mede 16,67 cm e o lado y mede 50 cm.
Podemos resolver esse exercício usando o Teorema de Tales, que diz que "se duas retas são transversais de um feixe de retas paralelas, então a razão entre os dois segmentos quaisquer de uma delas é igual a razão entre os segmentos correspondentes da outra".
Vemos pela figura que os segmentos que cortam o canteiro são paralelos a AB, assim, podemos escrever que as seguintes razões:
y ÷ 25 = 30 ÷ 15
y ÷ 25 = 2
y = 2 x 25
y = 50 cm
25 ÷ x = 15 ÷ 10
15x = 25(10)
x = 250 ÷ 15
x = 16,67 cm
Para saber mais:
brainly.com.br/tarefa/20558053
Espero ter ajudado!
Anexos:
Perguntas interessantes