Matemática, perguntado por brunodabah, 7 meses atrás

O isótopo radioativo de chumbo, Ph 209, decresce a uma taxa proporcional à quantidade presente em qualquer tempo. Sua meia vida é de 3, 3 horas. Se 1 grama de chumbo está presente inicialmente, quanto tempo levará para 90% de chumbo desaparecer?

Soluções para a tarefa

Respondido por Worgin
5

Se o decrescimento é proporcional à quantidade presente então podemos modelar tal decrescimento por:  m(t)=m(0).e^{-kt}

m(3,3)=m(0).e^{-k.3,3}\\\\\frac{m_0}{2}=m(0).e^{-k.3,3}\\\\\frac{1}{2}=e^{-k.3,3}\\\\\ln{\frac{1}{2}}=\ln{e^{-k.3,3}}\\\\\ln1-\ln2=-k.3,3\\\\k=\frac{-\ln2}{-3,3}\\\\k=0,2100446002

-------------------------------

Se 90% desaparecerá então a massa restante será de 10% da inicial:

\frac{m_0}{10}=m(0).e^{-kt}\\\\\frac{1}{10}=e^{-kt}\\\\\ln1-\ln10=-kt\\\\t=\frac{-ln10}{-k}\\\\t=10,96h

Perguntas interessantes