O investimento é uma forma de o cidadão poupar dinheiro. Se você aplicar R$ 2.200,00 em um determinado banco, poderá, após 7 meses, receber um montante de R$ 2.492,62.
A - Qual foi a taxa de aplicação desse capital?
B - Calcule a taxa trimestral equivalente a 30% ao ano. Assim, verifique qual taxa valeria mais a pena usar na aplicação: a taxa do item a) ou a do item b).
Soluções para a tarefa
Respondido por
0
a) Encontrando a taxa mensal:
![taxa=\sqrt[{periodo}]{\dfrac{montante}{capital}}-1\\\\\\
taxa\ mensal=\sqrt[{7}]{\dfrac{2.492,62}{2.200}}-1\\\\\\
taxa\ mensal\approx\sqrt[{7}]{1,13301}-1\\\\\\
taxa\ mensal\approx1,018-1\\\\\\
taxa\ mensal\approx0,018\ (\ \approx\ 1,8\%\ a.m.\ ) taxa=\sqrt[{periodo}]{\dfrac{montante}{capital}}-1\\\\\\
taxa\ mensal=\sqrt[{7}]{\dfrac{2.492,62}{2.200}}-1\\\\\\
taxa\ mensal\approx\sqrt[{7}]{1,13301}-1\\\\\\
taxa\ mensal\approx1,018-1\\\\\\
taxa\ mensal\approx0,018\ (\ \approx\ 1,8\%\ a.m.\ )](https://tex.z-dn.net/?f=taxa%3D%5Csqrt%5B%7Bperiodo%7D%5D%7B%5Cdfrac%7Bmontante%7D%7Bcapital%7D%7D-1%5C%5C%5C%5C%5C%5C%0Ataxa%5C+mensal%3D%5Csqrt%5B%7B7%7D%5D%7B%5Cdfrac%7B2.492%2C62%7D%7B2.200%7D%7D-1%5C%5C%5C%5C%5C%5C%0Ataxa%5C+mensal%5Capprox%5Csqrt%5B%7B7%7D%5D%7B1%2C13301%7D-1%5C%5C%5C%5C%5C%5C%0Ataxa%5C+mensal%5Capprox1%2C018-1%5C%5C%5C%5C%5C%5C%0Ataxa%5C+mensal%5Capprox0%2C018%5C+%28%5C+%5Capprox%5C+1%2C8%5C%25%5C+a.m.%5C+%29)
Encontrando a taxa trimestral, que será utilizada para comparação no item b:
![taxa\ trimestral = (1+0,018)^3-1\\\\
taxa\ trimestral = (1,018)^3-1\\\\
taxa\ trimestral \approx 1,055-1\\\\
taxa\ trimestral \approx 0,055\ (\ 5,5\%\ a.t.\ ) taxa\ trimestral = (1+0,018)^3-1\\\\
taxa\ trimestral = (1,018)^3-1\\\\
taxa\ trimestral \approx 1,055-1\\\\
taxa\ trimestral \approx 0,055\ (\ 5,5\%\ a.t.\ )](https://tex.z-dn.net/?f=taxa%5C+trimestral+%3D+%281%2B0%2C018%29%5E3-1%5C%5C%5C%5C%0Ataxa%5C+trimestral+%3D+%281%2C018%29%5E3-1%5C%5C%5C%5C%0Ataxa%5C+trimestral+%5Capprox+1%2C055-1%5C%5C%5C%5C%0Ataxa%5C+trimestral+%5Capprox+0%2C055%5C+%28%5C+5%2C5%5C%25%5C+a.t.%5C+%29)
b) Calculando a taxa trimestral equivalente a 30% a.a:
![taxa\ trimestral = \sqrt[4]{1 + 0,30}-1\\\\
taxa\ trimestral = \sqrt[4]{1,30}-1\\\\
taxa\ trimestral \approx1,0678-1\\\\
taxa\ trimestral \approx0,0678\ (\ \approx 6,78\%\ ) taxa\ trimestral = \sqrt[4]{1 + 0,30}-1\\\\
taxa\ trimestral = \sqrt[4]{1,30}-1\\\\
taxa\ trimestral \approx1,0678-1\\\\
taxa\ trimestral \approx0,0678\ (\ \approx 6,78\%\ )](https://tex.z-dn.net/?f=taxa%5C+trimestral+%3D+%5Csqrt%5B4%5D%7B1+%2B+0%2C30%7D-1%5C%5C%5C%5C%0Ataxa%5C+trimestral+%3D+%5Csqrt%5B4%5D%7B1%2C30%7D-1%5C%5C%5C%5C%0Ataxa%5C+trimestral+%5Capprox1%2C0678-1%5C%5C%5C%5C%0Ataxa%5C+trimestral+%5Capprox0%2C0678%5C+%28%5C+%5Capprox+6%2C78%5C%25%5C+%29)
Comparando as taxas trimestrais entre os itens a) e b), podemos concluir que a taxa do item b) vale mais a pena usar na aplicação:
![6,78\% \ \textgreater \ 5,5\% 6,78\% \ \textgreater \ 5,5\%](https://tex.z-dn.net/?f=6%2C78%5C%25+%5C+%5Ctextgreater+%5C++5%2C5%5C%25)
Bons estudos!
Encontrando a taxa trimestral, que será utilizada para comparação no item b:
b) Calculando a taxa trimestral equivalente a 30% a.a:
Comparando as taxas trimestrais entre os itens a) e b), podemos concluir que a taxa do item b) vale mais a pena usar na aplicação:
Bons estudos!
Perguntas interessantes