Matemática, perguntado por user1938929, 8 meses atrás

o gabarito esta dizendo q e a letra D) mas eu queria saber como resolve essa questão​

Anexos:

Soluções para a tarefa

Respondido por elizeugatao
0

Vamos usar as seguintes propriedades :

  • Logaritmando e base iguais :

              \displaystyle \text{Log}_{\ \displaystyle \text x}\ (\text x) = 1  

  • Definição de Log :

              \displaystyle \text{Log}_{\ \displaystyle \text y}\ (\text x) = \text p \to \text x = \text y^{\text p}

  • Expoente no Logaritmando :

              \displaystyle \text{Log}_{\ \displaystyle \text y}\ (\text x)^{\text n} = \text{n.Log}_{\ \text y}(\text x)

  • Expoente na base :

             \displaystyle \text{Log}_{\ \displaystyle \text y^{\displaystyle (\text n)}}\ (\text x) = \frac{1}{\text n}.\text{Log}_{\text y}.(\text x)

Temos a seguinte questão.

\text{a,b e c } \in \mathbb{R} > 1 \ (\text{ reais maiores que 1})

* \displaystyle \text{Log}_{\ \displaystyle \text b}\ (\text a ) = 2 \to \text a = \text b^2

* \displaystyle \text{Log}_{\ \displaystyle \text b}\ (\text c) = 3 \to \text c = \text b^3

O valor da expressão :

\displaystyle \text{Log}_{\ \displaystyle \text c}\ (\text{a.c}) + 3.\text{Log}_{\ \displaystyle \text c}\ (\text b) - 2.\text{Log}_{\ \displaystyle \text c}\ (\frac{\text a}{\text b})

Substituindo os respectivos valores em função de b :

\displaystyle \text{Log}_{\ \displaystyle \text b^3}\ (\text b^2.\text b^3) + 3.\text{Log}_{\ \displaystyle \text b^3}\ (\text b) - 2.\text{Log}_{\ \displaystyle \text b^3}\ (\frac{\text b^2}{\text b})

\displaystyle \text{Log}_{\ \displaystyle \text b^3}\ (\text b^5) + 3.\text{Log}_{\ \displaystyle \text b^3}\ (\text b) - 2.\text{Log}_{\ \displaystyle \text b^3}\ (\text b)

Aplicando as propriedades :

\displaystyle 5.\frac{1}{3}.\text{Log}_{\ \displaystyle \text b}\ (\text b) + 3.\frac{1}{3}.\text{Log}_{\ \displaystyle \text b}\ (\text b) - 2.\frac{1}{3}.\text{Log}_{\ \displaystyle \text b}\ (\text b)

\displaystyle \frac{5}{3} + \frac{3}{3}. - \frac{2}{3}

\displaystyle \frac{5-2}{3} + 1 \to \frac{3}{3} + 1  \to 1+1

\huge\boxed{2} \checkmark

Perguntas interessantes