o diâmetro da circunferência da equação x² + y² + 4y - 4 = 0, vale?
Soluções para a tarefa
O diâmetro da circunferência é igual a 4√2. A partir da equação reduzida da circunferência, podemos determinar as coordenadas do centro da circunferência, assim como seu raio.
Equação Reduzida da Circunferência
Considere uma circunferência. A equação reduzida de uma circunferência pode ser escrita da seguinte maneira:
(x - xc)² + (y - yc)² = R²
Em que:
- xc é a abscissa do centro da circunferência;
- yc é a ordenada do centro da circunferência;
- R é o raio da circunferência.
Assim, dada a equação:
x² + y² + 4y - 4 = 0
Completando quadrados, podemos escrever a equação na forma reduzida:
x² + y² + 4y - 4 = 0
x² + y² + 4y + 4 - 4 = 4
x² + (y² + 4y + 4) - 4 = 4
x² + (y + 2)² - 4 = 4
x² + (y + 2)² = 4 + 4
x² + (y + 2)² = 8
Assim, o raio da circunferência é igual a:
R² = 8
R = √8
R = 2√2
O diâmetro da circunferência é igual a:
D = 2R
D = 2(2√2)
D = 4√2
Para saber mais sobre Círculo e Circunferência, acesse: brainly.com.br/tarefa/41553153
#SPJ2