O Conjunto solução da equação |x-3|=|x-3|² possui quantos elementos?
Soluções para a tarefa
Respondido por
6
MÓDULO
Equação Modular 3° tipo (resolução por artifícios)
Fazendo |x-3|=y, temos que:
Retomando a variável original, temos:
Para y=0:
Para y=1:
A solução desta equação modular será:
Solução:{}
Resposta: Possui dois elementos.
Equação Modular 3° tipo (resolução por artifícios)
Fazendo |x-3|=y, temos que:
Retomando a variável original, temos:
Para y=0:
Para y=1:
A solução desta equação modular será:
Solução:{}
Resposta: Possui dois elementos.
Respondido por
18
Resposta:
Questão muito boa da EsPCEx...
Pela definição de equações modulares: quando | f(x) | = | g(x) | , f(x) = g (x) ou f(x) = -g(x)
Assim, | x-3 | = | x-3 |² ------> | x-3| = | x²-6x+9 |
x²-6x+9 = x-3 ----> x²-7x+12 = 0 -----> x=3 ou x=4
x²-6x+9 = -x+3 ----> x²-5x-6 = 0 -----> x=2 ou x=3
Como o número "3" se repete, o conjunto solução da equação em |R é:
S={2, 3 e 4}
Logo, o conjunto possui 3 elementos. Letra B!
Perguntas interessantes
Matemática,
11 meses atrás
Português,
11 meses atrás
História,
1 ano atrás
Inglês,
1 ano atrás
Matemática,
1 ano atrás