O conjunto solução da equação (x-1)2=3x+1 é
Soluções para a tarefa
Respondido por
2
O conjunto solução da equação (x-1)2=3x+1 é
(x - 1)² = 3x + 1
(x - 1)(x - 1) = 3x + 1
x² - 1x - 1x + 1 = 3x + 1
x² - 2x + 1 =3x + 1 IGUALAR a zero ( atenção no sinal)
x² - 2x + 1 - 3x - 1 = 0 junta iguais
x² - 2x -3x + 1 - 1 = 0
x² - 5x 0 = 0
x² - 5x = 0 equação do 2º GRAU incompleta
x(x - 5) = 0
x = 0
e
(x - 5) = 0
x - 5 = 0
x = + 5
assim
x' = 0
x" = 5
S = { 0 : 5} resposta
(x - 1)² = 3x + 1
(x - 1)(x - 1) = 3x + 1
x² - 1x - 1x + 1 = 3x + 1
x² - 2x + 1 =3x + 1 IGUALAR a zero ( atenção no sinal)
x² - 2x + 1 - 3x - 1 = 0 junta iguais
x² - 2x -3x + 1 - 1 = 0
x² - 5x 0 = 0
x² - 5x = 0 equação do 2º GRAU incompleta
x(x - 5) = 0
x = 0
e
(x - 5) = 0
x - 5 = 0
x = + 5
assim
x' = 0
x" = 5
S = { 0 : 5} resposta
andrefelipe388:
ei pode olha esse ?
Perguntas interessantes