O conjunto solução da equação irracional
√3x + 4 = x :
A- é vazio
B- tem apenas o elemento -1
C- tem os elementos -1 e 4
D- tem apenas o elemento -4
E- tem apenas o elemento 4
Soluções para a tarefa
Resposta:
S = { 4 } logo E )
( ver gráfico em anexo )
Explicação passo a passo:
Observação 1 → Equações irracionais
São aquelas que têm a incógnita num radical.
Observação 2 → Como se resolve Equação irracional ?
Isola-se o radical num dos membros e elevam-se , cada um deles, ao
quadrado.
Observação 3 → Todas as soluções obtidas servem?
Depende. As soluções obtidas terão que ser , cada uma, substituída na
equação original.
Se validar esse equação, então serve a solução testada.
Início dos cálculos
3x + 4 = x²
- x² + 3x + 4 = 0
Formula de Bhaskara para equação do 2º grau
x = ( - b ± √Δ ) /2 com Δ = b² - 4 * a * c a ≠ 0
a = - 1
b = 3
c = 4
Δ = 3² - 4 * ( - 1 ) * 4 = 9 + 16 = 25
√Δ = √25 = 5
x1 = ( - 3 + 5 ) / ( 2 *( - 1 ) )
x1 = 2 / ( - 2 )
x1 = - 1
x2 = ( - 3 - 5 ) / ( - 2 )
x2 = - 8 / (- 2 )
x2 = 4
Verificação de cada uma das soluções obtidas
Para x = - 1
é falso ; " - 1 " não serve para solução da equação irracional
Para x = 4
4 = 4 é verdadeiro , " 4 " serve como solução da equação irracional
S = { 4 } logo E )
Bons estudos.
--------------------------
( * ) multiplicação ( / ) divisão ( ≠ ) diferente de
( x1 ; x2 ) nomes dados às soluções da equação do 2º grau
Nas minhas respostas mostro e explico os passos dados na resolução, para
que o usuário seja capaz de aprender e depois fazer, por ele , em casos
idênticos.
O que eu sei, eu ensino.