Matemática, perguntado por mgs45, 5 meses atrás

O comprimento de um dos lados de um campo retangular é acrescido de 20%, o outro lado é acrescido de 50%, de forma que no final temos um campo quadrado, como mostra a figura (Anexo).
Se a área da figura destacada no anexo é de 200 metros quadrados, o produto dos lados do campo original é, em metros quadrados, igual a
(A) 550.
(B) 500.
(C) 300.
(D) 400.
(E) 150.

Anexos:

Soluções para a tarefa

Respondido por procentaury
4

O produto dos lados do campo original é 500 m². (Alternativa B).

Vou ignorar o enunciado contido na imagem pois está diferente do texto digitado e resultaria em resposta diferente.

  • Considere a e b as medidas dos lados do campo original. Se é pedido o produto dos lados do campo original, então é pedido o produto a⋅b.

  • Observe a imagem anexa. O comprimento do lado b foi acrescido de 20%, então o comprimento acrescido foi 0,2⋅b e o lado a foi acrescido de 50%, então o comprimento acrescido foi 0,5⋅a.
  • A área destacada (A), que mede 200 m², pode ser dividia em dois triângulos, um com base 0,2⋅b e altura a e outro com base 0,5⋅a e altura b + 0,2⋅b. Calcule essa área e iguale a 200 (lembrando que a área do triângulo é a metade do produto entre base e altura).

\large \text  {$ \sf A = \dfrac{0,2  b \cdot a}{2} + \dfrac{0,5 a \cdot (b + 0,2 b)}{2}$}

\large \text  {$ \sf A = 0,1ab + \dfrac{0,5 a \cdot (1,2 b)}{2}$}

\large \text  {$ \sf A = 0,1ab + \dfrac{0,6 ab}{2}$}

A = 0,1 ab + 0,3ab ⟹ Substitua o valor de A.

200 = 0,4 ab ⟹ Divida ambos os membros por 0,4.

ab = 500 m²

O produto dos lados do campo original é 500 m². (Alternativa B).

Observação: A resposta da resolução conforme está no enunciado da imagem (250 m²) não há nas alternativas.

Aprenda mais em:

  • https://brainly.com.br/tarefa/35528561
Anexos:

procentaury: Obrigado Nitoryu!
mgs45: Obrigada Procentaury.
Respondido por EinsteindoYahoo
1

Resposta:

Texto

Lado do quadrado formado ==> L=x*1,2=y*1,5 ==>x=1,25y

Área do quadrado= (y*1,5)²

(y*1,5)²/2 - x*y/2 =200

(y*1,5)²/2 - 1,25y*y/2 =200

2,25y²- 1,25y² =200*2

y²=400

y=20  ==>x=1,25*20=25

Área pedida=20*25 = 500m²

Letra B

Imagem

x*y=A

(x*1,2) *(y*1,5)=(A+200)

(x*1,2) *(y*1,5)=(A+200)

x*y*1,2*1,5=A+200

A*1,8=A+200

0,8*A =200

A=200/0,8 = 250 m²

Perguntas interessantes