Matemática, perguntado por fabiapds43, 9 meses atrás

O comprimento, a largura e a altura de um bloco retan-
gular são, nesta ordem, números inteiros e consecutivos.
Determine a altura e o volume desse sólido geométrico
sabendo que sua área lateral é 70 cm​

Soluções para a tarefa

Respondido por guieduardof
13

Resposta:

Altura = 5cm

Volume = 60cm³

Explicação passo-a-passo:

1) Pelos dados podemos criar um sistema, onde, x = comprimento, y = largura e z = altura, e a área lateral é a soma da área de todos os lados.

x = y-1

y = x+1

z = y+1

70 = 2xz+2yz

2) Como queremos descobrir a altura (z), através do sistema acima, podemos dizer que:

x = z-2

y = z-1

3) Substituindo x e y na equação da área temos:

70 = 2zx+2zy

70 = 2z(z-2)+2z(z-1)

70 = 2z²-4z+2z²-2z

70 = 4z²-6z (Equação de segundo grau)

4) Como caímos em uma equação de segundo grau, podemos resolver através de bháskara.

Passo 4.1) Organizar a equação

4x² - 6x  - 70 = 0

Passo 4.2) Extrair os dados da equação:

a = 4    ('a' sempre será o valor acompanhado de x²)

b = -6    ('b' sempre será o valor acompanhado de x)

c = -70    ('c' sempre será o valor que está sozinho)

Passo 4.3) Calcular o discriminante (∆):

∆ = b² - 4 a c

∆ = -6² - 4 . 4 . -70

∆ = 36 + 1120

∆ = 1156

Passo 4.5) Aplicar a fórmula de Bhaskara:

x=(-b ± √ ∆) / 2a

x =(-(-6) ± √ 1156) / 2 . 4

x =(6 ± 34) / 8

Passo 4.6) Calcular as raízes da equação:

x'= (6 - 34) / 8

x' = -3,5

x'' = (6 + 34) / 8

x'' = 5

S = { -3,5 ; 5 }

5) Como as dimensões devem ser números inteiros, assumimos que a altura(z) é igual a x'' = 5, portanto:

z = 5

Altura = 5cm

y = z-1

y=4

Largura = 4cm

x = z - 2

x = 3

Comprimento = 3cm

6) Calcular o volume:

V = comprimento . largura . altura

V = 3 . 4 . 5

V = 60cm³


guieduardof: Fabi, mereço um presente por essa resposta! Quebrei muito a cabeça. haha
fabiapds43: obrigado
Perguntas interessantes