Matemática, perguntado por DanielSpaceX, 1 ano atrás

O centro de uma circunferência é o ponto médio do segmento AB, sendo A(4,-7) e B(-8,-3). Se o raio dessa circunferência é 3, determine sua equação.

Soluções para a tarefa

Respondido por descart
4
Vejamos:
Ponto Médio (M) = (xA + xB)/2 e (yA + yB)/2
Mx = (4 -8)/2 = -2
My = (-7 -3)/2 = -5
Assim o centro da circunferência é: c = (-2,-5)
A equação de uma circunferência é dada pela fórmula: (x - a)² + (y - b)² = r²

Daí tem - se: (x + 2)² + (y + 5)² = 9
Respondido por Monicaellen125
0

Resposta:

Calculando o centro C através da equação do ponto médio de um segmento:

Coordenadas A(4; –7) e B(–8; –3).

\"\"

De acordo com a lei de formação da equação de uma circunferência

(x – a)² + (y – b)² = r²

, temos que de acordo com o ponto médio o centro da circunferência é (–2; –5), isto é,

a = –2 e b = –5. Então:

(x + 2)² + (y + 5)² = 3²

(x + 2)² + (y + 5)² = 9

A equação da circunferência é dada por

(x + 2)² + (y + 5)² = 9

Perguntas interessantes