O centro da circunferência de equação x² + y²+16x-4y+12=0 é o ponto de coordenadas:
A)-8 e 2
B)8 e 2
C)6 e 4
D)16 e -4
E)4 e -1
Soluções para a tarefa
Respondido por
12
Resposta: O centro é o ponto C = (- 8, 2). Assim sendo, a alternativa A) está correta.
Explicação passo-a-passo:
A equação geral (forma geral) da circunferência é dada por x² + y² + 16x - 4y + 12 = 0. Portanto, para calcularmos as coordenadas (abscissa e ordenada) de seu centro, utilizaremos a técnica de “completar quadrados”. Logo:
x² + y² + 16x - 4y + 12 = 0 =>
x² + 16x + 8² + y² - 4y + 2² = - 12 + 8² + 2² =>
(x + 8)² + (y - 2)² = 64 + 4 - 12 =>
(x + 8)² + (y - 2)² = 56 =>
O centro é o ponto C = (- 8, 2).
Abraços!
Perguntas interessantes
Matemática,
8 meses atrás
Português,
8 meses atrás
Matemática,
8 meses atrás
Química,
1 ano atrás
Geografia,
1 ano atrás
Pedagogia,
1 ano atrás
Pedagogia,
1 ano atrás
Matemática,
1 ano atrás