NÚMEROS COMPLEXOS
ix^2-2x+√3=0
resposta: S={√2/2+(√6-1)i , -√2/2-(√6/2+1)i}
DanJR:
Trabalhosa...
Soluções para a tarefa
Respondido por
3
Olá!
Por Bháskara,


Determinemos as raízes quadradas de
aplicando a 2ª fórmula de Moivre. Segue,
![\boxed{\mathsf{Z_k = \sqrt[n]{\rho} \cdot \left [ \cos \left ( \frac{\theta}{n} + k \cdot \frac{360^o}{n} \right ) + i \cdot \sin \left ( \frac{\theta}{n} + k \cdot \frac{360^o}{n} \right ) \right ], \ k = \left \{ 0, 1 \right \}}} \boxed{\mathsf{Z_k = \sqrt[n]{\rho} \cdot \left [ \cos \left ( \frac{\theta}{n} + k \cdot \frac{360^o}{n} \right ) + i \cdot \sin \left ( \frac{\theta}{n} + k \cdot \frac{360^o}{n} \right ) \right ], \ k = \left \{ 0, 1 \right \}}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cmathsf%7BZ_k+%3D+%5Csqrt%5Bn%5D%7B%5Crho%7D+%5Ccdot+%5Cleft+%5B+%5Ccos+%5Cleft+%28+%5Cfrac%7B%5Ctheta%7D%7Bn%7D+%2B+k+%5Ccdot+%5Cfrac%7B360%5Eo%7D%7Bn%7D+%5Cright+%29+%2B+i+%5Ccdot+%5Csin+%5Cleft+%28+%5Cfrac%7B%5Ctheta%7D%7Bn%7D+%2B+k+%5Ccdot+%5Cfrac%7B360%5Eo%7D%7Bn%7D+%5Cright+%29+%5Cright+%5D%2C+%5C+k+%3D+%5Cleft+%5C%7B+0%2C+1+%5Cright+%5C%7D%7D%7D)
Passando
para a sua forma trigonométrica, tiramos que:

Ou seja,
e
.
Com efeito,
![\\ \bullet \qquad \mathsf{Z_0 = \sqrt[2]{2} \cdot \left [ \cos \left ( \frac{300^o}{2} + 0 \cdot \frac{360^o}{2} \right ) + i \cdot \sin \left ( \frac{300^o}{2} + 0 \cdot \frac{360^o}{2} \right ) \right ]} \\\\\\ \mathsf{Z_0 = \sqrt{2} \cdot \left ( \cos 150^o + i \cdot \sin 150^o \right )} \\\\\\ \mathsf{Z_0 = \sqrt{2} \cdot \left ( - \frac{\sqrt{3}}{2} + i \cdot \frac{1}{2} \right )} \\\\\\ \boxed{\mathsf{Z_0 = \frac{\sqrt{2}}{2} \cdot \left ( - \sqrt{3} + i \right )}} \\ \bullet \qquad \mathsf{Z_0 = \sqrt[2]{2} \cdot \left [ \cos \left ( \frac{300^o}{2} + 0 \cdot \frac{360^o}{2} \right ) + i \cdot \sin \left ( \frac{300^o}{2} + 0 \cdot \frac{360^o}{2} \right ) \right ]} \\\\\\ \mathsf{Z_0 = \sqrt{2} \cdot \left ( \cos 150^o + i \cdot \sin 150^o \right )} \\\\\\ \mathsf{Z_0 = \sqrt{2} \cdot \left ( - \frac{\sqrt{3}}{2} + i \cdot \frac{1}{2} \right )} \\\\\\ \boxed{\mathsf{Z_0 = \frac{\sqrt{2}}{2} \cdot \left ( - \sqrt{3} + i \right )}}](https://tex.z-dn.net/?f=%5C%5C+%5Cbullet+%5Cqquad+%5Cmathsf%7BZ_0+%3D+%5Csqrt%5B2%5D%7B2%7D+%5Ccdot+%5Cleft+%5B+%5Ccos+%5Cleft+%28+%5Cfrac%7B300%5Eo%7D%7B2%7D+%2B+0+%5Ccdot+%5Cfrac%7B360%5Eo%7D%7B2%7D+%5Cright+%29+%2B+i+%5Ccdot+%5Csin+%5Cleft+%28+%5Cfrac%7B300%5Eo%7D%7B2%7D+%2B+0+%5Ccdot+%5Cfrac%7B360%5Eo%7D%7B2%7D+%5Cright+%29+%5Cright+%5D%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7BZ_0+%3D+%5Csqrt%7B2%7D+%5Ccdot+%5Cleft+%28+%5Ccos+150%5Eo+%2B+i+%5Ccdot+%5Csin+150%5Eo+%5Cright+%29%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7BZ_0+%3D+%5Csqrt%7B2%7D+%5Ccdot+%5Cleft+%28+-+%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D+%2B+i+%5Ccdot+%5Cfrac%7B1%7D%7B2%7D+%5Cright+%29%7D+%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cmathsf%7BZ_0+%3D+%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D+%5Ccdot+%5Cleft+%28+-+%5Csqrt%7B3%7D+%2B+i+%5Cright+%29%7D%7D)
![\\ \bullet \qquad \mathsf{Z_1 = \sqrt[2]{2} \cdot \left [ \cos \left ( \frac{300^o}{2} + 1 \cdot \frac{360^o}{2} \right ) + i \cdot \sin \left ( \frac{300^o}{2} + 1 \cdot \frac{360^o}{2} \right ) \right ]} \\\\\\ \mathsf{Z_1 = \sqrt{2} \cdot \left ( \cos 330^o + i \cdot \sin 330^o \right )} \\\\\\ \mathsf{Z_1 = \sqrt{2} \cdot \left ( \frac{\sqrt{3}}{2} + i \cdot \frac{- 1}{2} \right )} \\\\\\ \boxed{\mathsf{Z_1 = \frac{\sqrt{2}}{2} \cdot \left ( \sqrt{3} - i \right )}} \\ \bullet \qquad \mathsf{Z_1 = \sqrt[2]{2} \cdot \left [ \cos \left ( \frac{300^o}{2} + 1 \cdot \frac{360^o}{2} \right ) + i \cdot \sin \left ( \frac{300^o}{2} + 1 \cdot \frac{360^o}{2} \right ) \right ]} \\\\\\ \mathsf{Z_1 = \sqrt{2} \cdot \left ( \cos 330^o + i \cdot \sin 330^o \right )} \\\\\\ \mathsf{Z_1 = \sqrt{2} \cdot \left ( \frac{\sqrt{3}}{2} + i \cdot \frac{- 1}{2} \right )} \\\\\\ \boxed{\mathsf{Z_1 = \frac{\sqrt{2}}{2} \cdot \left ( \sqrt{3} - i \right )}}](https://tex.z-dn.net/?f=%5C%5C+%5Cbullet+%5Cqquad+%5Cmathsf%7BZ_1+%3D+%5Csqrt%5B2%5D%7B2%7D+%5Ccdot+%5Cleft+%5B+%5Ccos+%5Cleft+%28+%5Cfrac%7B300%5Eo%7D%7B2%7D+%2B+1+%5Ccdot+%5Cfrac%7B360%5Eo%7D%7B2%7D+%5Cright+%29+%2B+i+%5Ccdot+%5Csin+%5Cleft+%28+%5Cfrac%7B300%5Eo%7D%7B2%7D+%2B+1+%5Ccdot+%5Cfrac%7B360%5Eo%7D%7B2%7D+%5Cright+%29+%5Cright+%5D%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7BZ_1+%3D+%5Csqrt%7B2%7D+%5Ccdot+%5Cleft+%28+%5Ccos+330%5Eo+%2B+i+%5Ccdot+%5Csin+330%5Eo+%5Cright+%29%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7BZ_1+%3D+%5Csqrt%7B2%7D+%5Ccdot+%5Cleft+%28+%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D+%2B+i+%5Ccdot+%5Cfrac%7B-+1%7D%7B2%7D+%5Cright+%29%7D+%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cmathsf%7BZ_1+%3D+%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D+%5Ccdot+%5Cleft+%28+%5Csqrt%7B3%7D+-+i+%5Cright+%29%7D%7D)
Por fim, substituímos
e
em

Segue,
![\\ \mathsf{x_1 = \left ( - 1 + Z_0 \right ) \cdot i} \\\\\\ \mathsf{x_1 = \left [ - 1 + \frac{\sqrt{2}}{2} \cdot \left ( - \sqrt{3} + i \right ) \right ] \cdot i} \\\\\\ \mathsf{x_1 = - i - \frac{i\sqrt{6}}{2} + \frac{i^2\sqrt{2}}{2}} \\\\\\ \boxed{\boxed{\boxed{\mathsf{x_1 = - \frac{\sqrt{2}}{2} - \left ( 1 + \frac{\sqrt{6}}{2} \right ) \cdot i}}}} \\ \mathsf{x_1 = \left ( - 1 + Z_0 \right ) \cdot i} \\\\\\ \mathsf{x_1 = \left [ - 1 + \frac{\sqrt{2}}{2} \cdot \left ( - \sqrt{3} + i \right ) \right ] \cdot i} \\\\\\ \mathsf{x_1 = - i - \frac{i\sqrt{6}}{2} + \frac{i^2\sqrt{2}}{2}} \\\\\\ \boxed{\boxed{\boxed{\mathsf{x_1 = - \frac{\sqrt{2}}{2} - \left ( 1 + \frac{\sqrt{6}}{2} \right ) \cdot i}}}}](https://tex.z-dn.net/?f=%5C%5C+%5Cmathsf%7Bx_1+%3D+%5Cleft+%28+-+1+%2B+Z_0+%5Cright+%29+%5Ccdot+i%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bx_1+%3D+%5Cleft+%5B+-+1+%2B+%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D+%5Ccdot+%5Cleft+%28+-+%5Csqrt%7B3%7D+%2B+i+%5Cright+%29+%5Cright+%5D+%5Ccdot+i%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bx_1+%3D+-+i+-+%5Cfrac%7Bi%5Csqrt%7B6%7D%7D%7B2%7D+%2B+%5Cfrac%7Bi%5E2%5Csqrt%7B2%7D%7D%7B2%7D%7D+%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cboxed%7B%5Cboxed%7B%5Cmathsf%7Bx_1+%3D+-+%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D+-+%5Cleft+%28+1+%2B+%5Cfrac%7B%5Csqrt%7B6%7D%7D%7B2%7D+%5Cright+%29+%5Ccdot+i%7D%7D%7D%7D)
E,
![\\ \mathsf{x_2 = \left ( - 1 + Z_1 \right ) \cdot i} \\\\\\ \mathsf{x_2 = \left [ - 1 + \frac{\sqrt{2}}{2} \cdot \left (\sqrt{3} - i \right ) \right ] \cdot i} \\\\\\ \mathsf{x_2 = - i + \frac{i\sqrt{6}}{2} - \frac{i^2\sqrt{2}}{2}} \\\\\\ \boxed{\boxed{\boxed{\mathsf{x_2 = \frac{\sqrt{2}}{2} + \left ( - 1 + \frac{\sqrt{6}}{2} \right ) \cdot i}}}} \\ \mathsf{x_2 = \left ( - 1 + Z_1 \right ) \cdot i} \\\\\\ \mathsf{x_2 = \left [ - 1 + \frac{\sqrt{2}}{2} \cdot \left (\sqrt{3} - i \right ) \right ] \cdot i} \\\\\\ \mathsf{x_2 = - i + \frac{i\sqrt{6}}{2} - \frac{i^2\sqrt{2}}{2}} \\\\\\ \boxed{\boxed{\boxed{\mathsf{x_2 = \frac{\sqrt{2}}{2} + \left ( - 1 + \frac{\sqrt{6}}{2} \right ) \cdot i}}}}](https://tex.z-dn.net/?f=%5C%5C+%5Cmathsf%7Bx_2+%3D+%5Cleft+%28+-+1+%2B+Z_1+%5Cright+%29+%5Ccdot+i%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bx_2+%3D+%5Cleft+%5B+-+1+%2B+%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D+%5Ccdot+%5Cleft+%28%5Csqrt%7B3%7D+-+i+%5Cright+%29+%5Cright+%5D+%5Ccdot+i%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bx_2+%3D+-+i+%2B+%5Cfrac%7Bi%5Csqrt%7B6%7D%7D%7B2%7D+-+%5Cfrac%7Bi%5E2%5Csqrt%7B2%7D%7D%7B2%7D%7D+%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cboxed%7B%5Cboxed%7B%5Cmathsf%7Bx_2+%3D+%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D+%2B+%5Cleft+%28+-+1+%2B+%5Cfrac%7B%5Csqrt%7B6%7D%7D%7B2%7D+%5Cright+%29+%5Ccdot+i%7D%7D%7D%7D)
Por Bháskara,
Determinemos as raízes quadradas de
Passando
Ou seja,
Com efeito,
Por fim, substituímos
Segue,
E,
Perguntas interessantes
Português,
11 meses atrás
Matemática,
11 meses atrás
Sociologia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
História,
1 ano atrás