número 300 em Maia?
Soluções para a tarefa
Explicação passo-a-passo:
Então isso foi oq eu consegui encontrar
Resposta:
[3 barras horizontais empilhadas]
[1 semente]
Explicação passo-a-passo:
A numeração maia, que possui uma base vigesimal (base 20), possui os seus 20 algarismos separados de 5 em 5 da seguinte forma:
0 = 1 semente
1 = 1 ponto
2 = 2 pontos lado-a-lado
3 = 3 pontos lado-a-lado
4 = 4 pontos lado-a-lado
5 = 1 barra horizontal
6 = 1 barra horizontal com 1 ponto em cima
7 = 1 barra horizontal com 2 pontos lado-a-lado em cima
8 = 1 barra horizontal com 3 pontos lado-a-lado em cima
9 = 1 barra horizontal com 4 pontos lado-a-lado em cima
10 = 2 barras horizontais empilhadas
11 = 2 barras horizontais empilhadas com 1 ponto em cima
12 = 2 barras horizontais empilhadas com 2 pontos lado-a-lado em cima
13 = 2 barras horizontais empilhadas com 3 pontos lado-a-lado em cima
14 = 2 barras horizontais empilhadas com 4 pontos lado-a-lado em cima
15 = 3 barras horizontais empilhadas
16 = 3 barras horizontais empilhadas com 1 ponto em cima
17 = 3 barras horizontais empilhadas com 2 pontos lado-a-lado em cima
18 = 3 barras horizontais empilhadas com 3 pontos lado-a-lado em cima
19 = 3 barras horizontais empilhadas com 4 pontos lado-a-lado em cima
Os pontos e barras também eram escritos na forma vertical em algumas situações, mas a forma padrão era na horizontal.
Após esgotados estes 20 algarismos, cada próximo número é representado adicionando uma unidade à segunda casa vigesimal e recomeçando assim contagem das unidades. Esgotada a segunda casa vigesimal adiciona-se uma unidade à terceira casa quadricentenária (este palavrão quer dizer 400 em ordinal, ou seja, 20²) e assim sucessivamente.
Uma curiosidade é que alguns calendários maias usavam uma organização numérica diferente onde a terceira posição era ocupada não por uma potência de 20² mas sim de 20*18 para facilitar assim as contagens de anos. Nesta explicação utilizaremos a forma padrão.
Ao contrário da numeração hindu-arábico de base decimal que utilizamos escrevendo da direita para a esquerda, a numeração vigesimal maia tinha uma ordenação de baixo para cima, ou seja, as unidades, em baixo, as vigenas acima, as quadricentenas acima e assim por diante, ou seja
....
[4ª casa : potências de 20³]
[3ª casa : potências de 20²]
[2ª casa : potências de 20¹]
[1ª casa : potências de 20º]
Só a fim de comparação, temos que a base numérica decimal que utilizamos é escrita da direita para a esquerda (para os números inteiros) da seguinte forma:
….[4ª casa: milhar][3ª casa: centena][2ª casa: dezena][1ª casa: unidade]
….[potências de 10³][potências de 10²][potências de 10¹][potências de 10º]
Portanto assim como o número ABC na base decimal pode ser decomposto como
A*10² + B*10¹ + C*10º
os números maias na base vigesimal também podem ser decompostos em potências de 20 na forma de D*20² + E*20¹ + F*20º . Como?
Para descobrir as unidades F devemos
1º) dividir nosso número ABC (ainda na base decimal) por 20¹
2º) tomar somente as casas após a vírgula e multiplicar por 20
Para descobrir as vigenas E devemos
1º) subtrair nosso número ABC (ainda na base decimal) por F*20º
2º) dividir o resultado desta subtração por 20²
3º) tomar somente as casas após a vírgula e multiplicar por 20
Para descobrir as quadricentenas D devemos
1º) subtrair nosso número ABC (ainda na base decimal) por (F*20º + E*20¹)
2º) dividir o resultado desta subtração por 20³
3º) tomar somente as casas após a vírgula e multiplicar por 20
E assim sucessivamente. Sabemos a hora que o número foi encontrado quando a subtração pelas potências anteriores for igual a zero. Seguindo esta estratégia então teremos que 300 é composto da forma
15*20¹ + 0*20º
e será escrito em mais da seguinte forma:
[3 barras horizontais empilhadas]
[1 semente]
♥? ★★★★★? Melhor resposta? Você decide.
Bons estudos. ≧◉ᴥ◉≦