Matemática, perguntado por SenhorNomeMagnifico, 6 meses atrás

Numa progressão geométrica crescente, o produto dos 3 primeiros termos é 3375. Sabendo que a soma do segundo termo com o terceiro termo é 90.

Qual é a soma dos 5 primeiros termos?

Soluções para a tarefa

Respondido por ewerton197775p7gwlb
1

Resolução!

O produto dos três primeiros termos e igual a 3375

x/q . x . xq = 3375

X^3 = 3375

X = 3\/ 3375

X = 15

A soma do segundo com o terceiro termo e igual a 90

x + xq = 90

15 + 15q = 90

15q = 90 - 15

15q = 75

q = 75/15

q = 5

= x/q , x , xq

= 15/5 , 15 , 15 × 5

= 3 , 15 , 75

A soma dos cinco primeiros termos dessa PG

Sn = a1 ( q^n - 1 ) / q - 1

Sn = 3 ( 5^5 - 1 ) / 5 - 1

Sn = 3 ( 3125 - 1 ) / 4

Sn = 3 × 3124 / 4

Sn = 3 × 781

Sn = 2343

Espero ter ajudado

Anexos:

SenhorNomeMagnifico: Ah, vlw, achei onde estava errando :))
Perguntas interessantes