numa Pg a soma do 4termo com o 6 termo E 120 E A SOMA DO SÉTIMO TERMO COM O NOVO É 960 ESCREVA A PG
Soluções para a tarefa
Respondido por
0
Temos o seguinte:

Logo temos:

Resolvendo pelo método da divisão temos:

Logo temos o primeiro termo:

Logo a P.G será:

Logo temos:
Resolvendo pelo método da divisão temos:
Logo temos o primeiro termo:
Logo a P.G será:
Perguntas interessantes
Português,
1 ano atrás
História,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
História,
1 ano atrás