Numa PA de seis termos, a soma dos dois primeiros termos é igual 16 e a soma dos dois últimos termos é 48. Calcule o 1° termo e a razão dessa PA.
Soluções para a tarefa
Respondido por
53
Oi Mariana,
![P.A.=(a _{1},a _{2},a _{3},a _{4},a _{5},a _{6}) P.A.=(a _{1},a _{2},a _{3},a _{4},a _{5},a _{6})](https://tex.z-dn.net/?f=P.A.%3D%28a+_%7B1%7D%2Ca+_%7B2%7D%2Ca+_%7B3%7D%2Ca+_%7B4%7D%2Ca+_%7B5%7D%2Ca+_%7B6%7D%29+++++)
a soma dos dois primeiros é 16, e dos dois últimos é 48:
![\begin{cases}a _{1}+a _{2}=16\\
a _{5}+a _{6}=48 \end{cases}~\to~\begin{cases}a _{1}+(a _{1}+r)=16\\
(a _{1}+4r)+(a _{1}+5r)=48 \end{cases} \begin{cases}a _{1}+a _{2}=16\\
a _{5}+a _{6}=48 \end{cases}~\to~\begin{cases}a _{1}+(a _{1}+r)=16\\
(a _{1}+4r)+(a _{1}+5r)=48 \end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7Da+_%7B1%7D%2Ba+_%7B2%7D%3D16%5C%5C%0Aa+_%7B5%7D%2Ba+_%7B6%7D%3D48++++%5Cend%7Bcases%7D%7E%5Cto%7E%5Cbegin%7Bcases%7Da+_%7B1%7D%2B%28a+_%7B1%7D%2Br%29%3D16%5C%5C%0A%28a+_%7B1%7D%2B4r%29%2B%28a+_%7B1%7D%2B5r%29%3D48++++%5Cend%7Bcases%7D)
Reduzindo os termos:
![\begin{cases}2a _{1}+r=16~~*(-1)\\
2a _{1} +9r=48 \end{cases}~\to~\begin{cases}-2a _{1}-r=-16\\
~~2a _{1}+9r=48 \end{cases}\\
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-------\\
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0+8r~=~32\\
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r=32/8\\
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r=4 \begin{cases}2a _{1}+r=16~~*(-1)\\
2a _{1} +9r=48 \end{cases}~\to~\begin{cases}-2a _{1}-r=-16\\
~~2a _{1}+9r=48 \end{cases}\\
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-------\\
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0+8r~=~32\\
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r=32/8\\
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r=4](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D2a+_%7B1%7D%2Br%3D16%7E%7E%2A%28-1%29%5C%5C%0A2a+_%7B1%7D+%2B9r%3D48+%5Cend%7Bcases%7D%7E%5Cto%7E%5Cbegin%7Bcases%7D-2a+_%7B1%7D-r%3D-16%5C%5C%0A%7E%7E2a+_%7B1%7D%2B9r%3D48++%5Cend%7Bcases%7D%5C%5C%0A%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E-------%5C%5C%0A%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E0%2B8r%7E%3D%7E32%5C%5C%0A%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7Er%3D32%2F8%5C%5C%0A%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7Er%3D4)
Descoberta a razão da P.A., podemos substituí-la em uma das equações, por exemplo na equação I, e acharmos o primeiro termo:
![2a _{1}+r=16\\
2a _{1}+4=16\\
2 a_{1}=16-4\\
2a _{1}=12\\
a _{1}=12/2\\
a _{1}=6\\\\
Portanto,~a~razao~vale~4~e~o~primeiro~termo,~6. 2a _{1}+r=16\\
2a _{1}+4=16\\
2 a_{1}=16-4\\
2a _{1}=12\\
a _{1}=12/2\\
a _{1}=6\\\\
Portanto,~a~razao~vale~4~e~o~primeiro~termo,~6.](https://tex.z-dn.net/?f=2a+_%7B1%7D%2Br%3D16%5C%5C%0A2a+_%7B1%7D%2B4%3D16%5C%5C%0A2+a_%7B1%7D%3D16-4%5C%5C%0A2a+_%7B1%7D%3D12%5C%5C%0Aa+_%7B1%7D%3D12%2F2%5C%5C%0Aa+_%7B1%7D%3D6%5C%5C%5C%5C%0APortanto%2C%7Ea%7Erazao%7Evale%7E4%7Ee%7Eo%7Eprimeiro%7Etermo%2C%7E6.++++++)
Espero ter ajudado e tenha ótimos estudos =))
a soma dos dois primeiros é 16, e dos dois últimos é 48:
Reduzindo os termos:
Descoberta a razão da P.A., podemos substituí-la em uma das equações, por exemplo na equação I, e acharmos o primeiro termo:
Espero ter ajudado e tenha ótimos estudos =))
Usuário anônimo:
Muitooo Obrigada :)
Perguntas interessantes
Ed. Física,
1 ano atrás
Química,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Sociologia,
1 ano atrás