Matemática, perguntado por wanessaferreira, 1 ano atrás

Numa PA, a4=11 e a7=20. Qual a soma dos 12 primeiros termos?

Soluções para a tarefa

Respondido por korvo
2
PROGRESSÕES ARITMÉTICAS

Inicialmente vamos calcular a razão e o 1° termos desta P.A.

a4 a5 a6 a7
11          20

Aplicando a fórmula do termo geral da P.A., temos:

An=a1+(n-1)r
A7=a4+(n-1)r
20=11+(4-1)r
20-11=3*r
    9 = 3r
    r=9/3
     r=3

Agora vamos descobrir a1:

An=a1+(n-1)r
20=a1+(7-1)3
20=a1+6*3
20=a1+18
20-18=a1
a1=2

Agora vamos descobrir A12:

An=a1+(n-1)r
A12=2+(12-1)3
A12=2+11*3
A12=2+33
A12=35

Agora vamos descobrir a soma dos 12 primeiros termos desta P.A.:

S _{n} = \frac{(a1+An)n}{2}

S _{12} = \frac{(2+35)*12}{2}

S _{12}= \frac{37*12}{2}

S _{12} = \frac{444}{2}

S _{12}=222
Perguntas interessantes