Física, perguntado por KailaOdara, 1 ano atrás

Numa montanha-russa, um carrinho de 400 kg de massa é abandonado do repouso de um ponto A, que está a 5,0 m
de altura. E a altura do ponto C é de 4,0 m.

Supondo-se que o atrito seja desprezível e que g = 10 m/s2
, qual o valor da velocidade do carrinho no ponto B e no
ponto C?

Soluções para a tarefa

Respondido por Usuário anônimo
3
     Desprezando as forças dissipativas, podemos considerar que a Energia Mecânica é conservada. Utilizando o Teorema da Conservação da Energia Cinética no ponto A, temos:

E_{M}=E_{c}+E_{p} \\ E_{M}=mgH \\ E_{M}=400*10*5 \\ E_{M}=2*10^4
 
     Utilizando a mesma fórmula no ponto B, vem que:

E_{M}=E_{c}+E_{p} \\ 2*10^4= \frac{mv^2}{2} +mgh \\ 2*10^4=200v^2+400*10*4 \\ v=  \sqrt{\frac{2*10^4-1.6*10^4}{200} } \\ v=  \sqrt{\frac{4*10^3}{2*10^2}}  \\ \boxed {v= \sqrt{20} m/s}
Perguntas interessantes