Numa mercearia, uma maçã foi lançada ao ar de baixo para cima. A altura que a maçã alcançou de baixo para cima é dada por:
H (t) = 2 + 8t – t²
a. Calcule a taxa média de variação no intervalo de tempo (0, 2) após o lançamento.
b. Calcule a velocidade média da maçã no t=2
Soluções para a tarefa
Respondido por
1
A taxa média = =
h(t) = 2 + 8t - t²
h(0) = 2 + 8*0 - 0² ⇒ h(0) = 2 + 0 - 0 ⇒ h(0) = 2
h(2) = 2 + 8*2 - 2² ⇒ h(2) = 2 + 16 - 4 ⇒ h(2) = 14
Tm = = =
A velocidade se dá através da derivada da posição
H'(t) = V(t) = - 2t + 8
Como queremos descobrir a velocidade em um instante de tempo, temos a velocidade instantânea, ou seja, a derivada da posição e um determinado tempo.
V(2) = - 2*2 + 8
V(2) = -4 + 8
V(2) = 4 m/s
h(t) = 2 + 8t - t²
h(0) = 2 + 8*0 - 0² ⇒ h(0) = 2 + 0 - 0 ⇒ h(0) = 2
h(2) = 2 + 8*2 - 2² ⇒ h(2) = 2 + 16 - 4 ⇒ h(2) = 14
Tm = = =
A velocidade se dá através da derivada da posição
H'(t) = V(t) = - 2t + 8
Como queremos descobrir a velocidade em um instante de tempo, temos a velocidade instantânea, ou seja, a derivada da posição e um determinado tempo.
V(2) = - 2*2 + 8
V(2) = -4 + 8
V(2) = 4 m/s
dudynha20:
Não terminei ainda, cliquei sem querer
Perguntas interessantes
Saúde,
9 meses atrás
História,
9 meses atrás
Português,
9 meses atrás
Biologia,
1 ano atrás
Filosofia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás