Filosofia, perguntado por GhostCrazy, 7 meses atrás

Num triângulo, um dos ângulos mede 47° e o outro mede 24°. O terceiro ângulo

interno mede?

( Com o Cálculo por favor )

Soluções para a tarefa

Respondido por gf288360
1

Explicação:

A soma dos ângulos internos de um triângulo possui resultado fixo e igual para todos os triângulos e independe de sua classificação, forma ou tamanho.

Os triângulos são polígonos formados por três lados. Dentro do conjunto de todos os polígonos, os triângulos são os mais simples, por apresentarem menos lados, mas possuem propriedades e características complexas. Uma delas se refere à soma de seus ângulos internos, que é sempre igual a 180º, independentemente do formato do triângulo, de seu tamanho ou de qualquer outra característica.

Sendo assim, um triângulo ABC, com ângulos internos a, b e c, possui a seguinte propriedade:

a + b + c = 180

Essa propriedade não é usada para descobrir que a soma dos ângulos internos é igual a 180°, mas é usada para descobrir a medida de um dos ângulos do triângulo quando se conhece as medidas dos outros dois.

Exemplos

1º exemplo – Qual é a medida do ângulo α na figura a seguir?



Solução:

Sabendo que os ângulos internos de um triângulo totalizam 180°, podemos escrever:

α + 50 + 50 = 180

α = 180 – 50 – 50

α = 80°

2º exemplo – Calcule o valor de x no triângulo a seguir.



Solução:

Como já sabemos, a soma dos ângulos internos de um triângulo é 180°. Portanto, podemos escrever:

2x + 3x + 4x = 180

9x = 180

x = 180

     9

x = 20

Demonstração

O procedimento usado para mostrar que a soma dos ângulos internos de um triângulo é sempre igual a 180° será feito a seguir em etapas e baseia-se em outro conhecimento: dos ângulos formados em um feixe de retas paralelas cortadas por uma transversal. Para compreender bem a demonstração, lembre-se: ângulos alternos internos são congruentes. Além disso, lembre-se também de que as semirretas que definem um ângulo raso (de 180°) formam uma reta. Isso significa que qualquer ângulo observado sobre uma reta terá essa medida.

Etapa 1: Desenhar um triângulo ABC cuja base é BC. Observe apenas que esse triângulo é aleatório, pode ser qualquer triângulo, e que a base também pode ser AC ou BA que o resultado obtido será o mesmo.

Etapa 2: Sobre o vértice A, trace a reta paralela ao lado BC, como mostra o exemplo a seguir:



Etapa 3: Colocar sobre esse desenho os ângulos internos α, β e γ do triângulo e os ângulos θ e λ que foram formados no processo:



Etapa 4: Observe que os ângulos θ e β são alternos internos. Isso significa que são congruentes. O mesmo acontece com γ e λ, que também são alternos internos. Logo, podemos trocar θ por β e λ por γ na imagem. Assim, obteremos o esquema ilustrado pela imagem a seguir.

Etapa 5: Observar que a soma dos ângulos realmente é 180°. Para isso, note que os ângulos na figura a seguir, que foram circulados, ao mesmo tempo, têm a mesma medida dos ângulos internos do triângulo e os três juntos formam um ângulo raso, portanto:

α + β + γ = 180°

A soma dos ângulos internos de um triângulo é fixa

Publicado por Luiz Paulo Moreira Silva

Compartilhe!

  

Vídeo 1

Vídeo 2

Vídeo 3

Artigos Relacionados

Ângulos opostos pelo vértice

Clique e aprenda o que são ângulos opostos pelo vértice e ângulos adjacentes, bem como as propriedades mais importantes que os envolvem.

Relações métricas no hexágono regular inscrito

Clique e aprenda o que são relações métricas no hexágono regular inscrito e descubra como usá-las para calcular as medidas do lado e do apótema.

Soma dos ângulos externos de um polígono

Clique para aprender qual é a soma dos ângulos externos de um polígono convexo e veja como é possível obter esse resultado.

Demonstração da lei dos senos

Clique para obter uma demonstração da lei dos senos e aprofunde seus conhecimentos relacionados a triângulos que não possuem ângulo reto.

Triângulos

Clique para aprender o que são os triângulos e conheça quais os elementos dessa figura e as suas principais propriedades.

Triângulo retângulo

Entenda o que é triângulo retângulo, calcule sua área e seu perímetro, e saiba aplicar o teorema de Pitágoras! Veja relações trigonométricas no triângulo retângulo.

Medidas de Ângulos

Clique aqui e aprenda a transformar as unidades de medidas de ângulos.

Duas Retas Paralelas Cortadas por uma Transversal

Determinação de ângulos com base na semelhança de triângulos.

Ângulos no círculo

Clique aqui e conheça as características e propriedades dos ângulos no círculo!

Pontos Notáveis do Triângulo

Você sabe como identificar os pontos notáveis do triângulo? Aprenda a encontrar todos eles.

Diagonais de um polígono

Clique para conhecer um modo de obter o número de diagonais de um polígono em que não é necessário contá-las uma a uma.

Retas

Confira as principais ideias que envolvem retas e algumas propriedades básicas dessa figura geométrica!

Ângulos complementares e suplementares

Aprenda o que são ângulos complementares e suplementares e veja alguns exemplos e definições importantes que envolvem esses conceitos.

Retângulos

Descubra o que é retângulo e algumas características básicas que ele possui, decorrentes de sua definição e da família de figuras a que eles pertencem.

Ângulos

Clique para aprender o que são ângulos, como medi-los e algumas características dos ângulos notáveis.

Versão mobile

Perguntas interessantes