Matemática, perguntado por Quorthory, 1 ano atrás

Num prisma hexagonal regular de altura 10√3, a área lateral é o dobro da área da base. Determine a área total e o volume desse prisma.

Soluções para a tarefa

Respondido por Kæzar
32
Olá.

A_{lateral} = L.H\\\\
A_{lateral} = 2.A_{base}\\\\
2.A_{base} = L.(10\sqrt3)\\\\\\
A_{base} = 6\frac{L^2\sqrt3}{4}\\\\
A_{base} = 3\frac{L^2\sqrt3}{2}\\\\\\
2.(3\frac{L^2\sqrt3}{2}) = L.(10\sqrt3)\\\\
3L^2\sqrt3 = L.(10\sqrt3)\\\\

3L^2-10L= 0\\\\
\Delta = 10^2-4.3.0\\
\Delta = 100\\\\
L = \frac{10+-10}{2.3}\\\\
L^1 = \frac{10+10}{6} = \frac{20}{6} = \frac{10}{3}\\\\
L^2 = \frac{10-10}{6} = \frac{0}{6} = 0\\\\\\
L = \frac{10}{3}

A_{total} = 2.A_{B} + 2.A_{B}\\
A_{total} = 4.A_{B}\\\\
A_{total} = 4.(\frac{L^2\sqrt3}{4})\\\\
A_{total} = (\frac{10}{3})^2.\sqrt3\\\\
A_{total} = \frac{100\sqrt3}{9}\\\\
A_{total} = \frac{100.3^\frac{1}{2}}{3^2}\\\\
A_{total} = 100.3^{\frac{1}{2}-2}\\\\
A_{total} = 100.3^{-\frac{3}{2}}

V = A_{B}.H\\\\
V = \frac{L^2\sqrt3}{4}.10\sqrt3\\\\
V = (\frac{10}{3})^2.3.\frac{10}{3}\\\\
V = \frac{300}{9}.\frac{10}{3}\\\\
V = \frac{1000}{9}cm^3\\\\

Perguntas interessantes