Num fio de cobre passa uma corrente contínua de 20A. Calcule o número de elétrons que passam por uma secção reta do fio em 5s.
Dados: Carga do elétron (e = 1,6 . 10 -19 C)
Soluções para a tarefa
Primeiramente, devemos nos lembrar da fórmula da corrente elétrica, que é igual a:
i = ΔQ ÷ Δt , sendo:
i = a corrente elétrica (em A);
ΔQ = a carga elétrica (em C);
Δt = o tempo ( em segundos).
Vale ressaltar que a carga elétrica (ΔQ) tem uma fórmula específica, que engloba a incógnita da questão (que é o número de elétrons que passam pela secção do fio no intervalo de tempo). Ela pode ser escrita como:
ΔQ = n . e , sendo:
ΔQ = a carga elétrica (em C);
n = número de elétrons que passam pela secção reta do fio (em elétrons);
e = carga do elétron (sempre dada na questão, na maioria dos casos igual a 1,6 x 10^-19 C).
Assim, para encontrar o n com os valores dados na questão, é necessário "unir" a fórmula de i com a de ΔQ:
i = ΔQ ÷ Δt
i = n.e / Δt (essa barra "/" simboliza divisão "÷")
Colocando os valores, sempre respeitando suas medidas de valor (se é em A, C, segundos, ...):
20 = n . 1,6 x 10^-19 / 5 (passa o cinco dividindo "para o lado", transformando - o em um cinco multilpicando com 20)
20 . 5 = 1,6 x 10^-19 . n
100 = 1,6 x 10^-19 . n (transforma o 100 em uma potência de 10, virando 10^2, pois 10 . 10 é 100)
10^2 = 1,6 x 10^-19 . n (isola o n passando o 1,6 x 10^-19 multiplicando para o lado, virando uma divisão com 10^2)
10^2 / 1,6 x 10^-19 = n (passa o 10^-19 "para cima", mudando o sinal do expoente, -19, de sinal, ficando + 19)
10^2 . 10^ 19 / 1,6 = n (regra de potência de mesma base, repete a base e soma os expoentes, 2 com o 19)
10^21 / 1,6 = n (para dividir com o 1,6, "tira" um x 10 desses 10^21, ficando assim 10 x 10^20)
10 x 10^20 / 1,6 = n
6,25 x 10^20 elétrons é o número dos mesmos que passa sobre uma secção de fio em 5s, com uma corrente elétrica de 20 A.