Matemática, perguntado por thaisvalentina2014, 11 meses atrás

NUM ANO QUALQUER 55% DAS ACÕES NEGOCIADAS NA BOLSA DE VALORES DE SÃO PAULO SOFRERÃO ALTA,ENQUANTO45% SE MANTIVERAM ESTAVEISO OU SOFRERAM BAIXAS.UMA CORRETORA DE AÇÕES SAPARA DEZ AÇÕES E SUA CARTEIRA AO ACASO.QUAL APROBABILIDADE DE QUE,DESSA DEZ AÇOES EXATAMENTE OITO AÇÕES TENHAM TIDO ALTA?
a-4,32% , b- 9,64%, c-6,36%,d-7,65% alguem me ajuda ?

Soluções para a tarefa

Respondido por numero20
7

Alternativa D: 7,65%.

Esta questão está relacionada com distribuição binominal. Nesse tipo de distribuição, calculamos a probabilidade de um evento ocorrer em função da probabilidade de sucesso e de fracasso. Para isso, utilizamos a seguinte equação:

P=C_{n,k}\times p^k\times q^{n-k}

Onde "n" é o número de elementos, "k" é o número de sucessos, "n-k" é o número de falhas, "p" é a probabilidade de sucesso e "q" a probabilidade de fracasso.

Considerando 8 ações com alta dentre as 10 ações escolhidas, obtemos a seguinte probabilidade:

P=\frac{10!}{2!\times 8!}\times 0,55^8\times 0,45^2\approx 0,0763=7,63\%

Perguntas interessantes