Matemática, perguntado por Ikrin, 3 meses atrás

No triangulo ABC, tais que A=(0,1), C= (1,3), B= (-3,5), tomamos M o pnto médio de AB. No ponto de BC tal que NB/NC = 1/3 e P o ponto de AC, tal que PA/PC= 2 . Quais as coordenadas do baricentro do triangulo MNP ?

Soluções para a tarefa

Respondido por auditsys
2

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{A(0;1)\:\:\:\:\:B(-3;5)\:\:\:\:\:C(1;3)}

\mathsf{M = \left(\dfrac{x_A + x_B}{2};\:\dfrac{y_A + y_B}{2}\right)}

\mathsf{M = \left(\dfrac{0 + (-3)}{2};\:\dfrac{1 + 5}{2}\right)}

\mathsf{M = \left(-\dfrac{3}{2};\:\dfrac{6}{2}\right)}

\mathsf{M = \left(-\dfrac{3}{2};\:3\right)}

\mathsf{\dfrac{NB}{NC} = \dfrac{1}{3}}

\mathsf{N = \left(x_B + \dfrac{x_C - x_B}{4};\:y_B + \dfrac{y_C - y_B}{4}\right)}

\mathsf{N = \left(-3 + \dfrac{1 - (-3)}{4};\:5 + \dfrac{3 - 5}{4}\right)}

\mathsf{N = \left(-3 + \dfrac{1 + 3}{4};\:5 + \dfrac{3 - 5}{4}\right)}

\mathsf{N = \left(-3 + \dfrac{4}{4};\:5 - \dfrac{2}{4}\right)}

\mathsf{N = \left(-3 + 1;\:5 - \dfrac{1}{2}\right)}

\mathsf{N = \left(-2;\:\dfrac{9}{2}\right)}

\mathsf{\dfrac{PA}{PC} = 2}

\mathsf{P = \left(x_C + \dfrac{x_A - x_C}{3};\:y_C + \dfrac{y_A - y_C}{3}\right)}

\mathsf{P = \left(1 + \dfrac{0 - 1}{3};\:3+ \dfrac{1 - 3}{3}\right)}

\mathsf{P = \left(1 - \dfrac{1}{3};\:3 - \dfrac{2}{3}\right)}

\mathsf{P = \left(\dfrac{2}{3};\:\dfrac{7}{3}\right)}

\mathsf{G_{MNP} = \left(\dfrac{x_M + x_N + x_P}{3};\:\dfrac{y_M + y_N + y_P}{3}\right)}

\mathsf{G_{MNP} = \left(\dfrac{(-3/2) + (-2) + (2/3)}{3};\:\dfrac{3 + (9/2) + (7/3)}{3}\right)}

\mathsf{G_{MNP} = \left(\dfrac{-17/6}{3};\:\dfrac{59/6}{3}\right)}

\boxed{\boxed{\mathsf{G_{MNP} = \left(-\dfrac{17}{18};\:\dfrac{59}{18}\right)}}}\leftarrow\textsf{baricentro}

Perguntas interessantes