No triângulo ABC da figura, a seguir, cada um dos seis quadrados menores têm área igual a 4 cm ².
Nessas condições podemos afirmar que a hipotenusa AB mede:
Anexos:
Soluções para a tarefa
Respondido por
2
Olá!
A área do quadrado é calculada por (lado)².
Se l² = 4 cm² , então l = √4 e temos que lado = 2 cm.
Se cada lado vale 2 cm, então os segmentos vermelhos marcados na figura vale 4 cm cada um, e por isso o segmento BC = 12 cm.
Se cada lado dos quadrados vale 2 cm, então a altura do triângulo, destacada de preto no segmento AC = 6 cm.
Como já temos os catetos BC = 12 e AC = 6, então vamos encontrar a hipotenusa AB utilizando Teorema de Pitágoras.
AB² = AC² + BC²
AB² = 6² + 12²
AB² = 36 + 144
AB² = 180
AB = √180
Resposta: Letra a)
:)
Anexos:
gabrielbs30112012:
te amoooooooooooooooo
Perguntas interessantes
Pedagogia,
7 meses atrás
Matemática,
7 meses atrás
História,
7 meses atrás
Matemática,
1 ano atrás
Informática,
1 ano atrás