Matemática, perguntado por yasmin8065, 1 ano atrás

No alto da Torre de uma emissora de televisão, duas luzes "piscam" com frequência diferentes. A primeiras "pisca" 15 vezes por minuto e a segunda "pisca" 10 vezes por minuto. Se num certo istante, as luzes piscam simultaneamente, após quantos segundos elas voltarão a piscar simultaneamente?​

Soluções para a tarefa

Respondido por AlissonLaLo
4

\Large\boxed{\boxed{\boxed{{Ola\´\ Aluno(a)}}}}}

Exercício envolvendo MMC.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Note que o tempo que elas piscam está em minutos , mas a questão quer saber os segundos , logo temos que transformar o tempo em que elas piscam em segundos.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Sabemos que 1 minuto tem 60 segundos :

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

60 : 15 = 4 => A primeira pisca a cada 4 segundos.

60 : 10 = 6 => A segunda pisca a cada 6 segundos.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

\Large\begin{array}{r|l}4,6&2\\2,3&2\\1,3&3\\1,1&1\\\end{array}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Logo temos : 2 * 2 * 3 = 12

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Portanto , após 12 segundos , elas voltarão a piscar novamente.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Espero ter ajudado!

Respondido por Usuário anônimo
1

Resposta:

OLÁ

VAMOS A SUA PERGUNTA:⇒⇒

  • PARA RESPONDER BASTA DIVIDIR AS VEZES QUE CADA UM PISCAM.
  • LEMBRANDO:⇒⇒ 1 MINUTO É IGUAL A 60 SEGUNDOS.

\dfrac{60}{15} ====>4\\\\\\\dfrac{60}{10}====>6

  • AGORA BASTA TIRAR O MMC DE 4,6.

\begin{array}{r|l}4,6&2\\2,3&2\\1,3&3\\1,1&1\\1\end{array}\\2 \times 2 \times 3 = 12<===MMC

  • 12<=======RESPOSTA========>12

Explicação passo-a-passo:

ESPERO TER AJUDADO

Anexos:
Perguntas interessantes