Matemática, perguntado por MarceloDani, 1 ano atrás

Não estou me ligando na relação da número (01).
Coloque um exemplo aí!

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
2
Boa noite Marcelo!

Solução!

f(x)= \dfrac{x+1}{x-1}~~~~~x \in  \mathbb{R}-\{0,1\}\\\\\\
Temos~~que~~provar~~que\\\\\\
f\left ( \frac{1}{x} \right )=-f(x)\\\\\\
Esse~~subconjunto~~acima~~e~~a~~restric\~ao,ou~~seja:\\\\
n\~ao~~se~~divide~~nada~~por~~zero.



\left ( \dfrac{1}{x} \right )=-f(x)\\\\\\
\left ( \dfrac{1}{0} \right )=-f(x)  \Rightarrow \not \exists (N\~ao~~existe)


f\left ( \frac{1}{x} \right )=-f(x)\\\\\\
x= \dfrac{1}{x}\\\\\\Vamos~~agora~~substituir~~na~~fuc\~ao.\\\\\\

  \dfrac{1+x}{ \dfrac{x}{~~\dfrac{1}{x} -1} }+1 = -\dfrac{x+1}{x-1}\\\\\\\
  \dfrac{1+x}{ \dfrac{x}{ \dfrac{1-x}{x} } }  = -\dfrac{x+1}{x-1}\\\\\\\
 \frac{1+x}{x} . \frac{x}{1-x} = -\dfrac{x+1}{x-1}\\\\\\
\frac{1+x}{1-x}= -\dfrac{x+1}{x-1}\\\\\\
Organizando!\\\\\\\
\frac{x+1}{-x+1}= -\dfrac{x+1}{x-1}\\\\\\
Multiplicando~~o~~denominador~~por~~-1\\\\\\


\dfrac{x+1}{-1(x+1)}= - \dfrac{x+1}{x-1}\\\\\\
-1 \dfrac{x+1}{x-1}= - \dfrac{x+1}{x-1}\\\\\\
\boxed{Verdadeiro!~~f \left ( \dfrac{1}{x} \right )=-f(x)}



Exercício 2

f(x)= \dfrac{x+1}{x-1} \\\\\\\
g(x)=2x+3\\\\\\
D(fog)-\{-1\}\\\\\\
fog=f(g)x)\\\\\\
fog = \dfrac{(2x+3)+1}{(2x+3)-1}\\\\\\
fog = \dfrac{2x+3+1}{2x+3-1}\\\\\\
fog = \dfrac{2x+4}{2x+2}\\\\\\
Simplificando!\\\\\\\\
fog = \dfrac{(x+2)}{(x+1)}\\\\\\
fog = \dfrac{(x+2)}{(x+1)}\\\\\\


fog = \dfrac{(x+2)}{(x+1)}\\\\\
x+1 \neq 0\\\\\\
x \neq -1\\\\\\\\
Logo!\\\\\
Dominio~s\~ao~todos~os~reais~excluindo~~-1\\\\\
~~pois~~n\~ao~existe~~divis\~ao~por~~0\\\\\\
Resposta!\\\\\
\boxed{D(fog)=\mathbb{R}-\{-1\}}


Boa noite!
Bons estudos!






MarceloDani: bah, não consegui visualizar, mano
Usuário anônimo: Você esta no celular?
MarceloDani: Sim
MarceloDani: Pronto, abri mo computador
MarceloDani: Valeu brother! Tmjo. Não ia me ligar.
Usuário anônimo: No celular você não consegue ver a escrita no latex!
Perguntas interessantes