Matemática, perguntado por nicolecs, 1 ano atrás

Não consigo resolver, alguém me ajuda?
2^x-3+2^x-1+2^x=52

Soluções para a tarefa

Respondido por Usuário anônimo
2
Boa tarde Nicole!

Solução!

2^{x-3}+2^{x-1} +2^{x}=52\\\\\\
2^{x}.2^{-3}+2^{x}.2^{-1}+ 2^{x}=52\\\\\\\
2^{x}(2^{-3}+2^{-1}+1)=52\\\\\\\
2^{x}\bigg(\bigg( \dfrac{1}{2}\bigg)^{3}+\bigg( \dfrac{1}{2}\bigg)^{1}+1\bigg)=52\\\\\\\

2^{x}\bigg( \dfrac{1}{8}+\dfrac{1}{2}+1\bigg)=52\\\\\\\
2^{x}\bigg( \dfrac{1+4+8}{8}\bigg)=52\\\\\\\\\
2^{x}\bigg( \dfrac{13}{8}\bigg)=52


2 ^{x}= \dfrac{52}{ \dfrac{13}{8} }\\\\\\\\
2 ^{x}= 52\times \dfrac{8}{13}\\\\\\\
2^{x}= \dfrac{416}{13}\\\\\\\
2^{x}=32\\\\\\
2^{x}=2^{5}\\\\\
Bases~~iguais!\\\\\\\
x=5


\boxed{Resposta:~~2^{x-3}+2^{x-1} +2^{x}=52~~\Rightarrow~~S=\{5\}}

Boa tarde!
Bons estudos!



Respondido por korvo
1
Ae mano,

use a propriedade da exponenciação:

\large\boxed{a^{m+n}=a^m\cdot a^n}

Faça o mesmo com os termos desta equação exponencial:

2^{x-3}+2^{x-1}+2^x=52\\
2^x\cdot2^{-3}+2^x\cdot2^{-1}+2^x=52\\\\
2^x\cdot \dfrac{1}{2^3}+2^x\cdot \dfrac{1}{2^1}+2^x=52\\\\
 \dfrac{1}{8}\cdot2^x+ \dfrac{1}{2}\cdot2^x+2^x=52

Agora, mude a variável \large\boxed{\underbrace{\overbrace{2^x=y}}}

 \dfrac{1}{8}\cdot2^x+ \dfrac{1}{2}\cdot2^x+2^x=32\\\\
 \dfrac{1}{8}y+ \dfrac{1}{2}y+y=52\\\\ \dfrac{1}{8}y+ \dfrac{1}{2}y+ \dfrac{2}{2}y= \dfrac{104}{2}    \\\\
m.m.c.~de~~ 2~e~8=8\\\\
 \dfrac{1\cdot y+4\cdot y+4\cdot2y}{\not8}= \dfrac{4\cdot104}{\not8}\\\\
y+4y+8y=416\\
13y=416\\\\
y= \dfrac{416}{16}\\\\
y=32

Descobrimos que y vale 32, vamos retomar a variável
 
original, \large\boxed{\underbrace{\overbrace{2^x=y}}}

2^x=32\\
2^x=2^5\\
\not2^x=\not2^5\\\\
x=5\\\\\\
\huge\boxed{\text{S}=\{5\}}

Tenha ótimos estudos ;D
 
Perguntas interessantes