Matemática, perguntado por e3000gyn, 1 ano atrás

na igualdade de razões x/5 = y/7 = z/3, sabe-se que 2x - y + 3z =36. Determine o valor de x+y+z

Soluções para a tarefa

Respondido por giuliaventorim
6

Resposta:

45

Explicação passo-a-passo:

Vamos isolar y tendo como base as razões

x = \frac{5z}{3}

y = \frac{7z}{3}

Substituindo na equação:

2 \times  \frac{5z}{3}  - \frac{7z}{3}  + 3 \times z = 36

Com isso, obtemos:

 \frac{3z}{3}  + 3z = 3

4z = 36

z = 9

Agora é só substituir nas frações que achamos no início pra x e y

x = 45/3 = 15

y = 7*9/3 = 21

Logo,

x + y + z = 15 + 21 + 9 = 45

Perguntas interessantes