. Na flexão pura e na flexão simples, para determinar a equação da linha
elástica, devemos efetuar a integral indefinida duas vezes sucessivas da
expressão d
dx
M
E I z
2
2
. , gerando duas constantes, a princípio, incógnitas.
Para encontrá-las, devemos impor as chamadas condições de contorno,
ou seja, valores conhecidos da deflexão µ e/ou da inclinação da linha
elástica em pontos determinados.
Com relação às condições de contorno que devemos utilizar para
encontrar o valor das constantes quando efetuamos a integral indefinida
Faça valer a pena
U2 - Flexão em barras 34
duas vezes sucessivas para determinar a equação da linha elástica, assinale
a alternativa correta.
a) Impomos a condição de deslocamento nulo sobre apoios.
b) Impomos a condição de que a inclinação da linha elástica é nula sobre
os apoios.
c) Impomos a condição de que a deflexão é constante nos engastes.
d) Impomos a condição de que a inclinação da linha elástica é nula
nos engastes.
e) Impomos a condição de que a inclinação da linha elástica na
extremidade inicial da viga é igual à da extremidade final
Soluções para a tarefa
Respondido por
3
Resposta:
d) Impomos a condição de que a inclinação da linha elástica é nula
nos engastes.
Explicação passo-a-passo:
Perguntas interessantes