Na figura ao lado que representa o projeto de uma escada com 5 degraus de mesma altura, o comprimento total do corrimão é igual a: a;1,8. b;1,9m. c;2,0. d;2;1. e;2,2.
Soluções para a tarefa
O resultado do teorema será somado ao produto entre 2 e 0,3 (os dois 30 cm (ou 0,3 m) da figura).
Boa noite!
________________________________________________
→ O primeiro passo para resolução desse problema é a percepção de que a figura que se forma pela ligação do corrimão ao ponto alto da escada é um triângulo retângulo.
→ O enunciado nos pede apenas o comprimento total do corrimão dessa escada, o que no caso dessa questão é a soma das duas bases do corrimão somado ao corpo que se estende ao longo da escada. Na figura nós já temos o valor da duas bases, no caso ambas medem 30 cm.
→ Precisamos encontrar o valor do corpo do corrimão, que é claramente a hipotenusa do triângulo retângulo que vemos na figura em questão.
→ A explicação para que se tenha o comprimento total do cateto B é bem simples, veja bem;
- Você tem a base do triângulo na risca dos degraus, o que eu quero dizer com isso? Onde começa os degraus também começa a base do triângulo, e onde termina esses degraus também termina a base da figura triangular. Uma observação importante: Todos os degraus possuem o mesmo tamanho! Se todos eles possuem o mesmo tamanho, começam e terminam seu comprimento na mesma risca do triângulo, temos que o cateto B é a soma de todos esses degraus.
________________________________________________
Resolução do problema:
→ Tendo em vista um triangulo retângulo, podemos aplicar o TEOREMA DE PITÁGORAS.
Formula do TEOREMA:
h²=a²+b²
Dados para resolução:
h(hipotenusa) → ?
a(cateto 1) → 90 cm
b( cateto 2) → 5×24 = 120 cm
____________________________
Em busca da hipotenusa:
h²=a²+b²
h²=90²+120²
h²=8100+14400
h²=22500
h=√22500
h=150cm
____________________________
→ A hipotenusa é apenas o corpo do corrimão. Nós sabemos que o enunciado busca o comprimento de todo o corrimão, ou seja, corpo(hipotenusa) somado as duas bases.
→ Lembre-se que as bases que ultrapassam a escada são congruentes, ou seja, possuem o mesmo comprimento. No caso ambas medem 30cm!
Comprimento de todo o corrimão:
C=30+30+150
C=60+150
C=210 cm ( resposta em centímetros)
C= 210/100 = 2,1m ( resposta em metros)
________________________________________________
VOU ANEXAR UMA IMAGEM DETALHADA PRA VOCÊ ENTENDER MELHOR.
________________________________________________
Att;Guilherme Lima
#CEGTI