Na figura abaixo o segmento DE é paralelo ao lado BC do triângulo. Calcule o valor de
x e y.
Anexos:
![](https://pt-static.z-dn.net/files/d77/53f7d1e1da365743dfe9ea79afcdd69b.jpg)
Soluções para a tarefa
Respondido por
4
Os triângulos ADE e ABC são semelhantes, logo, seus lados são proporcionais
![\dfrac{\text{AB}}{\text{AD}}=\dfrac{\text{AC}}{\text{AE}} \dfrac{\text{AB}}{\text{AD}}=\dfrac{\text{AC}}{\text{AE}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Ctext%7BAB%7D%7D%7B%5Ctext%7BAD%7D%7D%3D%5Cdfrac%7B%5Ctext%7BAC%7D%7D%7B%5Ctext%7BAE%7D%7D)
![\dfrac{2x+4}{x+4}=\dfrac{12}{7} \dfrac{2x+4}{x+4}=\dfrac{12}{7}](https://tex.z-dn.net/?f=%5Cdfrac%7B2x%2B4%7D%7Bx%2B4%7D%3D%5Cdfrac%7B12%7D%7B7%7D)
![7\cdot(2x+4)=12\cdot(x+4) 7\cdot(2x+4)=12\cdot(x+4)](https://tex.z-dn.net/?f=7%5Ccdot%282x%2B4%29%3D12%5Ccdot%28x%2B4%29)
![14x+28=12x+48 14x+28=12x+48](https://tex.z-dn.net/?f=14x%2B28%3D12x%2B48)
![2x=20 \iff x=\dfrac{20}{2} \iff \boxed{x=10} 2x=20 \iff x=\dfrac{20}{2} \iff \boxed{x=10}](https://tex.z-dn.net/?f=2x%3D20+%5Ciff+x%3D%5Cdfrac%7B20%7D%7B2%7D+%5Ciff+%5Cboxed%7Bx%3D10%7D)
Agora y:
![\dfrac{\text{AC}}{\text{AE}}=\dfrac{\text{BC}}{\text{DE}} \dfrac{\text{AC}}{\text{AE}}=\dfrac{\text{BC}}{\text{DE}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Ctext%7BAC%7D%7D%7B%5Ctext%7BAE%7D%7D%3D%5Cdfrac%7B%5Ctext%7BBC%7D%7D%7B%5Ctext%7BDE%7D%7D)
![\dfrac{12}{7}=\dfrac{y}{9} \dfrac{12}{7}=\dfrac{y}{9}](https://tex.z-dn.net/?f=%5Cdfrac%7B12%7D%7B7%7D%3D%5Cdfrac%7By%7D%7B9%7D)
![7y=12\cdot9 7y=12\cdot9](https://tex.z-dn.net/?f=7y%3D12%5Ccdot9)
![7y=108 7y=108](https://tex.z-dn.net/?f=7y%3D108)
Agora y:
taianemarques4out7c6:
Muito obrigado ❤
Perguntas interessantes