n!
------ = 30
(n-2!
Soluções para a tarefa
Respondido por
1
Tópico: Equações envolvendo fatorial
n!
------ = 30
(n-2)!
Desenvolvendo o maior (n!) em função do menor [(n-2)!], teremos:
n•(n-1)•(n-2)!
----------------- = 30
(n-2)!
Simplificando o que é comum nos dois lados do traço de divisão. Obtém-se:
n•(n-1) = 30
=> n² - n = 30
=> n² - n - 30 = 0
Chegado nesse ponto, abrem-se diversas possibilidades de resolução, incluindo a utilização da fórmula resolvente. Mas, recorrendo ao método de Vièté, fica:
- Quais são os dois números cuja soma é 1 e o produto é -30?
Esses números são 6 e -5.
Portanto:
(n + 5)•(n - 6) = 0
=> n = —5 V n = 6
Como a função fatorial é definida no conjunto dos números naturais, ou seja, é uma função real de variável natural, então a solução é n = 6.
Espero ter ajudado!
Perguntas interessantes
Inglês,
6 meses atrás
Ed. Física,
6 meses atrás
História,
9 meses atrás
Física,
1 ano atrás
Matemática,
1 ano atrás