Matemática, perguntado por superaks, 1 ano atrás

Mostre que:

\mathsf{\dfrac{1}{1+tg^2(\beta)}-\dfrac{1}{1+tg^2(\alpha)}=(sen(\alpha)-sen(\beta))\cdot(sen(\alpha)+sen(\beta))}

___________

Responder de forma detalhada.


superaks: Agradeço ao Thihefi e ao robertocarlos5otivr9 pela correção no enunciado.

Soluções para a tarefa

Respondido por robertocarlos5otivr9
5
\mathsf{\dfrac{1}{1+\text{tg}^2(\beta)}-\dfrac{1}{1+\text{tg}^2(\alpha)}}

Lembrando que \mathsf{\text{tg}(\beta)=\dfrac{\text{sen}(\beta)}{\text{cos}(\beta)}} e \mathsf{\text{tg}(\alpha)=\dfrac{\text{sen}(\alpha)}{\text{cos}(\alpha)}}, obtemos:

\mathsf{\dfrac{1}{1+\text{tg}^2(\beta)}-\dfrac{1}{1+\text{tg}^2(\alpha)}=\dfrac{1}{1+\left[\dfrac{\text{sen}(\beta)}{\text{cos}(\beta)}\right]^2}-\dfrac{1}{1+\left[\dfrac{\text{sen}(\alpha)}{\text{cos}(\alpha)}\right]^2}}

\mathsf{\dfrac{1}{1+\text{tg}^2(\beta)}-\dfrac{1}{1+\text{tg}^2(\alpha)}=\dfrac{1}{1+\dfrac{\text{sen}^2(\beta)}{\text{cos}^2(\beta)}}-\dfrac{1}{1+\dfrac{\text{sen}^2(\alpha)}{\text{cos}^2(\alpha)}}}

\mathsf{\dfrac{1}{1+\text{tg}^2(\beta)}-\dfrac{1}{1+\text{tg}^2(\alpha)}=\dfrac{1}{\dfrac{\text{cos}^2(\beta)+\text{sen}^2(\beta)}{\text{cos}^2(\beta)}}-\dfrac{1}{\dfrac{\text{cos}^2(\alpha)+\text{sen}^2(\alpha)}{\text{cos}^2(\alpha)}}}

Pela relação fundamental da trigonometria, temos que:

\mathsf{\text{sen}^2(\beta)+\text{cos}^2(\beta)=\text{sen}^2(\alpha)+\text{cos}^2(\alpha)=1} 

Assim:

\mathsf{\dfrac{1}{1+\text{tg}^2(\beta)}-\dfrac{1}{1+\text{tg}^2(\alpha)}=\dfrac{1}{\dfrac{1}{\text{cos}^2(\beta)}}-\dfrac{1}{\dfrac{1}{\text{cos}^2(\alpha)}}}

\mathsf{\dfrac{1}{1+\text{tg}^2(\beta)}-\dfrac{1}{1+\text{tg}^2(\alpha)}=\text{cos}^2(\beta)-\text{cos}^2(\alpha)}}

Novamente pela relação fundamental, podemos afirmar que:

\mathsf{\text{cos}^2(\beta)=1-\text{sen}^2(\beta)} 

\mathsf{\text{cos}^2(\alpha)=1-\text{sen}^2(\alpha)}

Logo:

\mathsf{\dfrac{1}{1+\text{tg}^2(\beta)}-\dfrac{1}{1+\text{tg}^2(\alpha)}=1-\text{sen}^2(\beta)-[1-\text{sen}^2(\alpha)]}

\mathsf{\dfrac{1}{1+\text{tg}^2(\beta)}-\dfrac{1}{1+\text{tg}^2(\alpha)}=1-\text{sen}^2(\beta)-1+\text{sen}^2(\alpha)}

\mathsf{\dfrac{1}{1+\text{tg}^2(\beta)}-\dfrac{1}{1+\text{tg}^2(\alpha)}=\text{sen}^2(\alpha)-\text{sen}^2(\beta)}

Utilizando o produto notável \mathsf{a^2-b^2=(a-b)\cdot(a+b)}, obtemos:

\mathsf{\dfrac{1}{1+\text{tg}^2(\beta)}-\dfrac{1}{1+\text{tg}^2(\alpha)}=[\text{sen}(\alpha)-\text{sen}(\beta)]\cdot[\text{sen}(\alpha)+\text{sen}(\beta)]}
Perguntas interessantes