Matemática, perguntado por KeyllaS, 1 ano atrás

Mostre que o triângulo de vértices (2, 4), (5, 1) e (6, 5) é isósceles e calcule seu perímetro.

Soluções para a tarefa

Respondido por wemersonfc
12

A questão desses dois ex. é a distância entre pontos no espaço que é obtida por Pitágoras.

1

A(2,4) – B(5,1) – C(6-5)
Dist(A-B) = Raiz(3^2+3^2) = Raiz(18)
Dist(A-C) = Raiz(4^2+1^2) = Raiz(17)
Dist(B-C) = Raiz(1^2+4^2) = Raiz(17)

É possível fazer um triângulo porque o comprimento dos dois lados menores é maior que o do lado maior. O triãngulo é isósceles porque tem dois lados iguais Raiz(17)

Perímetro = Raiz(18) + 2Raiz(17)

2

A(-1,3) – B(2,5)

Raio = Raiz(3^2+2^2) = Raiz(13)
Diametro = 2.Raio = 2. Raiz(13)

Perguntas interessantes