Matemática, perguntado por superaks, 1 ano atrás

Mostre que a igualdade abaixo é verdadeira

\mathsf{\displaystyle\sum_{k=1}^\infty\dfrac{F_k}{10^{k+1}}=\dfrac{1}{89}}

Onde Fn é a sequência de Fibonacci.

\mathsf{F_n = \dfrac{1}{\sqrt{5}}\cdot\Big[\Big(\dfrac{1+\sqrt{5}}{2}\Big)^n - \Big(\dfrac{1-\sqrt{5}}{2}\Big)^n\Big]}}

Sabendo que

\mathsf{\displaystyle\sum_{k=p}^{\infty} x^k = \dfrac{x^p}{1-x}~~~se~~|x|\  \textless \ 1}

________

Por favor responder de forma detalhada.


Soluções para a tarefa

Respondido por robertocarlos5otivr9
0
Inicialmente, temos que F_k=\dfrac{x^{k}-y^{k}}{x-y}, onde x=\dfrac{1+\sqrt{5}}{2} e y=\dfrac{1-\sqrt{5}}{2}.

Note que x+y=1, x-y=\sqrt{5} e xy=-1

Colocando \dfrac{1}{10} em evidência:

\displaystyle\sum_{k=1}^{\infty} \frac{F_k}{10^{k+1}}=\dfrac{1}{10}\cdot\displaystyle\sum_{k=1}^{\infty} \frac{F_k}{10^{k}}

Substituindo F_k por \dfrac{x^{k}-y^{k}}{x-y}:

\displaystyle\sum_{k=1}^{\infty} \frac{F_k}{10^{k+1}}=\dfrac{1}{10}\cdot\displaystyle\sum_{k=1}^{\infty} \frac{\frac{x^{k}-y^{k}}{x-y}}{10^k}}=\dfrac{1}{10}\cdot\displaystyle\sum_{k=1}^{\infty} \frac{x^{k}-y^{k}}{10^{k}(x-y)}}

Colocando \dfrac{1}{x-y} em evidência:

\displaystyle\sum_{k=1}^{\infty} \frac{F_k}{10^{k+1}}=\dfrac{1}{10(x-y)}\cdot\displaystyle\sum_{k=1}^{\infty} \frac{x^{k}-y^{k}}{10^{k}}}

Mas, \dfrac{x^{k}-y^{k}}{10^{k}}=\dfrac{x^{k}}{10^{k}}-\dfrac{y^{k}}{10^{k}}=\left(\dfrac{x}{10}\right)^{k}-\left(\dfrac{y}{10}\right)^{k}, então

\displaystyle\sum_{k=1}^{\infty} \frac{F_k}{10^{k+1}}=\dfrac{1}{10(x-y)}\cdot\left[\displaystyle\sum_{k=1}^{\infty} \left(\frac{x}{10}\right)^{k}-\left(\frac{y}{10}\right)^{k}\right]

Como \left|\dfrac{x}{10}\right|<0 e \left|\dfrac{y}{10}\right|<0, pois -1<\dfrac{x}{10}=\dfrac{1+\sqrt{5}}{20}<1 e -1<\dfrac{y}{10}=\dfrac{1-\sqrt{5}}{20}<1, temos que:

\displaystyle\sum_{k=1}^{\infty} \left(\frac{x}{10}\right)^{k}-\left(\frac{y}{10}\right)^{k}\right=\displaystyle\sum_{k=1}^{\infty} \left(\frac{x}{10}\right)^{k}-\displaystyle\sum_{k=1}^{\infty}\left(\frac{y}{10}\right)^{k}\right

Pelo enunciado, \displaystyle\sum_{k=p}^{\infty} x^{k}=\dfrac{x^{p}}{1-x}, assim:

\displaystyle\sum_{k=1}^{\infty} \left(\frac{x}{10}\right)^{k}=\dfrac{\frac{x}{10}}{1-\frac{x}{10}}=\dfrac{\frac{x}{10}}{\frac{10-x}{10}}=\dfrac{x}{10-x}

\displaystyle\sum_{k=1}^{\infty} \left(\frac{y}{10}\right)^{k}=\dfrac{\frac{y}{10}}{1-\frac{y}{10}}=\dfrac{\frac{y}{10}}{\frac{10-y}{10}}=\dfrac{y}{10-y}

Desse modo, \displaystyle\sum_{k=1}^{\infty} \left(\frac{x}{10}\right)^{k}-\displaystyle\sum_{k=1}^{\infty}\left(\frac{y}{10}\right)^{k}\right=\dfrac{x}{10-x}-\dfrac{y}{10-y}

Logo:

\displaystyle\sum_{k=1}^{\infty} \frac{F_k}{10^{k+1}}=\dfrac{1}{10(x-y)}\cdot\left[\displaystyle\sum_{k=1}^{\infty} \left(\frac{x}{10}\right)^{k}-\left(\frac{y}{10}\right)^{k}\right]

\displaystyle\sum_{k=1}^{\infty} \frac{F_k}{10^{k+1}}=\dfrac{1}{10(x-y)}\cdot\left(\dfrac{x}{10-x}-\dfrac{y}{10-y}\right)

\displaystyle\sum_{k=1}^{\infty} \frac{F_k}{10^{k+1}}=\dfrac{1}{10(x-y)}\cdot\dfrac{10x-xy-10y+xy}{100-10x-10y+xy}

\displaystyle\sum_{k=1}^{\infty} \frac{F_k}{10^{k+1}}=\dfrac{1}{10(x-y)}\cdot\dfrac{10(x-y)}{100-10(x+y)+xy}

Lembrando que x+y=1 e xy=-1 obtemos:

\displaystyle\sum_{k=1}^{\infty} \frac{F_k}{10^{k+1}}=\dfrac{10(x-y)}{10(x-y)\cdot(100-10-1)}

\boxed{\displaystyle\sum_{k=1}^{\infty} \frac{F_k}{10^{k+1}}=\dfrac{1}{89}}
Perguntas interessantes