Matemática, perguntado por lozinha091, 1 ano atrás

monte a matriz e calcule o determinate de A =(aij)3x3 , tal que aij =i2- 2j ?

Soluções para a tarefa

Respondido por Luanferrao
2
A=  \left[\begin{array}{ccc}a_1_1&a_1_2&a_1_3\\a_2_1&a_2_2&a_2_3\\a_3_1&a_3_2&a_3_3\end{array}\right]

a_i_j=i^2-2j\\\\ a_1_1=1^2-2(1)\\\\ a_1_1=1-2\\\\ \boxed{a_1_1=-1}

a_1_2=1^2-2(2)\\\\ a_1_2=1-4\\\\ \boxed{a_1_2=-3}

a_1_3=1^2-2(3)\\\\ a_1_3=1-6\\\\ \boxed{a_1_3=-5}

a_2_1=2^2-2(1)\\\\ a_2_1=4-2\\\\ \boxed{a_2_1=2}

a_2_2=2^2-2(2)\\\\ a_2_2=4-4\\\\ \boxed{a_2_2=0}

a_2_3=2^2-2(3)\\\\ a_2_3=4-6\\\\ \boxed{a_2_3=-2}

a_3_1=3^2-2(1)\\\\ a_3_1=9-2\\\\ \boxed{a_3_1=7}

a_3_2=3^2-2(2)\\\\ a_3_2=9-4\\\\ \boxed{a_3_2=5}

a_3_3=3^2-2(3)\\\\ a_3_3=9-6\\\\ \boxed{a_3_3=3}

A matriz ficou assim

  A=\left[\begin{array}{ccc}-1&-3&-5\\2&0&-2\\7&5&3\end{array}\right]
Agora, o determinante

D=0+42-50-0+18-10\\\\ D=42+18-50-10\\\\ D=60-60\\\\ \boxed{D=0}

lozinha091: muuuuito obrigado
Luanferrao: por nada :)
Perguntas interessantes