Matemática, perguntado por eriolin7evitoripris, 1 ano atrás

medida dos ângulos internos do octógono?

Soluções para a tarefa

Respondido por webfelipemaia
5
Como todos os ângulos são iguais e o polígono é regular, então temos que descobrir qual o valor da soma dos ângulos e depois resolver o problema.

a) A soma dos ângulos

S₈ = 180° · (8 - 2) = 1080°

b) Quanto mede cada ângulo interno

S = 1080/8 = 135°

Portanto, cada ângulo interno mede 135°.
Respondido por Math739
1

O valor de cada ângulo interno de um polígono é dada pela fórmula:

\Large\displaystyle\text{$\begin{gathered}  \sf a_i =  \frac{(n - 2) \cdot180 {}^{ \circ} }{n} \end{gathered}$}

Onde:

\Large\displaystyle\text{$\begin{gathered}   \begin{cases}  \sf a_i  = ângulo \,interno=? \\  \sf n = n\acute{u}mero \,de\, lados  = 8\end{cases}\end{gathered}$}

Calculando o valor do ângulo interno de um octógono pela fórmula temos que:

\Large\displaystyle\text{$\begin{gathered}  \sf a_i =  \dfrac{(n - 2) \cdot180 {}^{ \circ} }{n} \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}  \sf a_i =  \frac{(8 - 2) \cdot180 {}^{ \circ} }{8} \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}  \sf a_i =  \frac{6 \cdot180 {}^{ \circ} }{8} \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}  \sf a_i =  \dfrac{1080 {}^{ \circ} }{8} \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}  \sf a_i = 135 {}^{ \circ} \end{gathered}$}

Portanto, o valor de cada ângulo interno de um octógono é:

\Large\displaystyle\text{$\begin{gathered}  \boxed{ \boxed{ \bf{135{}^{ \circ} }}}\end{gathered}$}

Perguntas interessantes