me expliquem sobre mmc e mdc estou confuso
Soluções para a tarefa
Respondido por
1
O máximo divisor comum (mdc) entre dois números naturais é obtido a partir da interseção dos divisores naturais, escolhendo-se o maior. O mdc pode ser calculado pelo produto dos fatores primos que são comuns tomando-se sempre o de menor expoente.
Exemplo: 120 e 36
120 2 36 2
60 2 18 2
30 2 9 3
15 3 3 3
5 5 1 22.32
1 23.3.5
m.d.c ( 120, 36) = 22.3 = 12
O m.d.c também pode ser calculado pela decomposição simultânea em fatores primos, tomando apenas os fatores que dividem simultaneamente.
120 - 36 2 ( * )
60 - 18 2 ( * )
30 - 9 2
15 - 9 3 ( * )
5 - 3 3
5 - 1 5
1 - 1 22.3 = 12
mmc
O mínimo múltiplo comum entre dois números naturais é obtido a partir da interseção dos múltiplos naturais, escolhendo-se o menor excetuando o zero. O m.m.c pode ser calculado pelo produto de todos os fatores primos, considerados uma única vez e de maior expoente.
Exemplo: 120 e 36
120 2 36 2
60 2 18 2
30 2 9 3
15 3 3 3
5 5 1 22.32
1 23.3.5
m.m.c ( 120, 36) = 23.32.5 = 360
O m.m.c também pode ser calculado pela decomposição simultânea em fatores primos.
120 - 36 2
60 - 18 2
30 - 9 2
15 - 9 3
5 - 3 3
5 - 1 5
1 - 1 23.32.5 = 360
OBS: Existe uma relação entre o m.m.c e o m.d.c de dois números naturais a e b.
m.m.c.(a,b) . m.d.c. (a,b) = a . b
O produto entre o m.m.c e m.d.c de dois números é igual ao produto entre os dois números.
Exemplo: 120 e 36
120 2 36 2
60 2 18 2
30 2 9 3
15 3 3 3
5 5 1 22.32
1 23.3.5
m.d.c ( 120, 36) = 22.3 = 12
O m.d.c também pode ser calculado pela decomposição simultânea em fatores primos, tomando apenas os fatores que dividem simultaneamente.
120 - 36 2 ( * )
60 - 18 2 ( * )
30 - 9 2
15 - 9 3 ( * )
5 - 3 3
5 - 1 5
1 - 1 22.3 = 12
mmc
O mínimo múltiplo comum entre dois números naturais é obtido a partir da interseção dos múltiplos naturais, escolhendo-se o menor excetuando o zero. O m.m.c pode ser calculado pelo produto de todos os fatores primos, considerados uma única vez e de maior expoente.
Exemplo: 120 e 36
120 2 36 2
60 2 18 2
30 2 9 3
15 3 3 3
5 5 1 22.32
1 23.3.5
m.m.c ( 120, 36) = 23.32.5 = 360
O m.m.c também pode ser calculado pela decomposição simultânea em fatores primos.
120 - 36 2
60 - 18 2
30 - 9 2
15 - 9 3
5 - 3 3
5 - 1 5
1 - 1 23.32.5 = 360
OBS: Existe uma relação entre o m.m.c e o m.d.c de dois números naturais a e b.
m.m.c.(a,b) . m.d.c. (a,b) = a . b
O produto entre o m.m.c e m.d.c de dois números é igual ao produto entre os dois números.
Perguntas interessantes
Artes,
10 meses atrás
História,
10 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Pedagogia,
1 ano atrás