Matemática, perguntado por ts4389163, 7 meses atrás

ME AJUDEM!!

Seja f: R RA função definida por f ( x )= 4 x² - 4x + 3. Determine x, se houver, para
que se tenha:
a) f(x)= 3
b) f(x)= -1​

Soluções para a tarefa

Respondido por edivaldocardoso
1

a)

f(x) = 4 {x}^{2}  - 4x + 3 \\  \\ f(x) = 3 \\  \\ \red{ 3} = 4 {x}^{2}  - 4x  \red{+ 3  }\\   \\ 0 = 4 {x}^{2}  - 4x  \\  \\ 4 {x}^{2}  - 4x  = 0 \\  \\4 x(x   - 1) = 0 \\  \\ 4x = 0 \\  \\   \Large\boxed{ \green{x = 0}} \\  \\ ou \\  \\ x - 1 = 0 \\  \\  \Large \boxed{ \green{x = 1}}

b)

f(x) = 4 {x}^{2} - 4x + 3 \\  \\  f(x) =  - 1 \\  \\  - 1 = 4 {x}^{2} - 4x + 3  \\  \\ 4 {x}^{2}  - 4x + 3  + 1 = 0 \\  \\( 4 {x}^{2}  - 4x + 4 = 0 ) \div 4\\  \\   {x}^{2}  - x + 1 = 0 \\  \\  \Delta =  {b}^{2}  - 4ac \\  \\  \Delta = ( - 1) {}^{2}  - 4(1)(1) \\  \\  \Delta = 1 - 4 \\  \\  \Delta =  - 3 =  > x \notin \mathbb{R} \\  \Large \boxed{ \green{ Não \: tem \:  salução \:  \mathbb{R}}} \\  \\  \Large \boxed{  \underline{\blue{ \bf \: Bons \: Estudos!} \: 14/05/2021}}

Perguntas interessantes