ME AJUDEM POR FAVOR.......
dada a matriz M=
, calcular:
a) o determinante de M;
b) a matriz dos cofatores de M;
c) a matriz adjunta de M;
d) a matriz inversa de M;
Soluções para a tarefa
Respondido por
1
A)
O determinante dessa matriz iremos calcular por "Sarrus"
![\\ D = det \left[\begin{array}{ccc}2&0&1\\0&1&3\\2&1&5\end{array}\right] \left\begin{array}{ccc}2&0\\0&1\\2&1\end{array}\right]
\\
\\ D = (2*1*5)+(0*3*2)+(1*0*1)- [ (2*1*1)+(1*3*2)+0]
\\
\\ D = 10 - [ 2+6]
\\
\\ D = 2 \\ D = det \left[\begin{array}{ccc}2&0&1\\0&1&3\\2&1&5\end{array}\right] \left\begin{array}{ccc}2&0\\0&1\\2&1\end{array}\right]
\\
\\ D = (2*1*5)+(0*3*2)+(1*0*1)- [ (2*1*1)+(1*3*2)+0]
\\
\\ D = 10 - [ 2+6]
\\
\\ D = 2](https://tex.z-dn.net/?f=+%5C%5C+D+%3D+det++%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26amp%3B0%26amp%3B1%5C%5C0%26amp%3B1%26amp%3B3%5C%5C2%26amp%3B1%26amp%3B5%5Cend%7Barray%7D%5Cright%5D+%5Cleft%5Cbegin%7Barray%7D%7Bccc%7D2%26amp%3B0%5C%5C0%26amp%3B1%5C%5C2%26amp%3B1%5Cend%7Barray%7D%5Cright%5D+%0A+%5C%5C+%0A+%5C%5C+D+%3D+%282%2A1%2A5%29%2B%280%2A3%2A2%29%2B%281%2A0%2A1%29-+%5B+%282%2A1%2A1%29%2B%281%2A3%2A2%29%2B0%5D%0A+%5C%5C+%0A+%5C%5C+D+%3D+10+-+%5B+2%2B6%5D%0A+%5C%5C+%0A+%5C%5C+D+%3D+2)
--------------------------------------------------------
B)
![\\ a_{11} = det\left[\begin{array}{ccc}1&3\\1&5\end{array}\right] = 1*5-3*1 =2
\\
\\
\\ a_{12} = -det\left[\begin{array}{ccc}0&3\\2&5\end{array}\right] = -(0*5-2*3) = 6
\\
\\
\\ a_{13} =det\left[\begin{array}{ccc}0&1\\2&1\end{array}\right] = 0*1-2*1 = -2
\\
\\
\\ a_{21} = -det\left[\begin{array}{ccc}0&1\\1&5\end{array}\right] = -(0*5-1*1) = 1
\\
\\
\\ a_{22} = det\left[\begin{array}{ccc}2&1\\2&5\end{array}\right] =2*5-2*1 = 8
\\ a_{11} = det\left[\begin{array}{ccc}1&3\\1&5\end{array}\right] = 1*5-3*1 =2
\\
\\
\\ a_{12} = -det\left[\begin{array}{ccc}0&3\\2&5\end{array}\right] = -(0*5-2*3) = 6
\\
\\
\\ a_{13} =det\left[\begin{array}{ccc}0&1\\2&1\end{array}\right] = 0*1-2*1 = -2
\\
\\
\\ a_{21} = -det\left[\begin{array}{ccc}0&1\\1&5\end{array}\right] = -(0*5-1*1) = 1
\\
\\
\\ a_{22} = det\left[\begin{array}{ccc}2&1\\2&5\end{array}\right] =2*5-2*1 = 8](https://tex.z-dn.net/?f=+%5C%5C++a_%7B11%7D+%3D+det%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26amp%3B3%5C%5C1%26amp%3B5%5Cend%7Barray%7D%5Cright%5D+%3D+1%2A5-3%2A1+%3D2%0A+%5C%5C+%0A+%5C%5C+%0A+%5C%5C++a_%7B12%7D+%3D+-det%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26amp%3B3%5C%5C2%26amp%3B5%5Cend%7Barray%7D%5Cright%5D+%3D+-%280%2A5-2%2A3%29+%3D+6%0A+%5C%5C+%0A+%5C%5C+%0A+%5C%5C+a_%7B13%7D+%3Ddet%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26amp%3B1%5C%5C2%26amp%3B1%5Cend%7Barray%7D%5Cright%5D+%3D+0%2A1-2%2A1+%3D+-2%0A+%5C%5C+%0A+%5C%5C+%0A+%5C%5C+a_%7B21%7D+%3D+-det%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26amp%3B1%5C%5C1%26amp%3B5%5Cend%7Barray%7D%5Cright%5D+%3D+-%280%2A5-1%2A1%29+%3D+1%0A+%5C%5C+%0A+%5C%5C+%0A+%5C%5C+a_%7B22%7D+%3D+det%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26amp%3B1%5C%5C2%26amp%3B5%5Cend%7Barray%7D%5Cright%5D+%3D2%2A5-2%2A1+%3D+8%0A%0A)
![\\ a_{23} = -det\left[\begin{array}{ccc}2&0\\2&1\end{array}\right] = -(2*1-2*0) =- 2
\\
\\
\\ a_{31} = det\left[\begin{array}{ccc}0&1\\1&3\end{array}\right] = 0*3-1*1 = -1
\\
\\
\\ a_{32} = -det\left[\begin{array}{ccc}2&1\\0&3\end{array}\right] =-(2*3-1*0) = -6
\\
\\
\\ a_{33} = det\left[\begin{array}{ccc}2&0\\0&1\end{array}\right] = 2*1-0*0 =2 \\ a_{23} = -det\left[\begin{array}{ccc}2&0\\2&1\end{array}\right] = -(2*1-2*0) =- 2
\\
\\
\\ a_{31} = det\left[\begin{array}{ccc}0&1\\1&3\end{array}\right] = 0*3-1*1 = -1
\\
\\
\\ a_{32} = -det\left[\begin{array}{ccc}2&1\\0&3\end{array}\right] =-(2*3-1*0) = -6
\\
\\
\\ a_{33} = det\left[\begin{array}{ccc}2&0\\0&1\end{array}\right] = 2*1-0*0 =2](https://tex.z-dn.net/?f=++%5C%5C+a_%7B23%7D+%3D+-det%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26amp%3B0%5C%5C2%26amp%3B1%5Cend%7Barray%7D%5Cright%5D+%3D+-%282%2A1-2%2A0%29+%3D-+2%0A+%5C%5C+%0A+%5C%5C+%0A+%5C%5C++a_%7B31%7D+%3D+det%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26amp%3B1%5C%5C1%26amp%3B3%5Cend%7Barray%7D%5Cright%5D+%3D+0%2A3-1%2A1+%3D+-1%0A+%5C%5C+%0A+%5C%5C+%0A+%5C%5C++a_%7B32%7D+%3D+-det%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26amp%3B1%5C%5C0%26amp%3B3%5Cend%7Barray%7D%5Cright%5D+%3D-%282%2A3-1%2A0%29+%3D+-6%0A+%5C%5C+%0A+%5C%5C+%0A+%5C%5C+a_%7B33%7D++%3D+det%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26amp%3B0%5C%5C0%26amp%3B1%5Cend%7Barray%7D%5Cright%5D+%3D+2%2A1-0%2A0+%3D2+)
A matriz das cofatoras será:
![Cof_{M} = \left[\begin{array}{ccc}2&6&-2\\1&8&-2\\-1&-6&2\end{array}\right] Cof_{M} = \left[\begin{array}{ccc}2&6&-2\\1&8&-2\\-1&-6&2\end{array}\right]](https://tex.z-dn.net/?f=+Cof_%7BM%7D+%3D+++%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26amp%3B6%26amp%3B-2%5C%5C1%26amp%3B8%26amp%3B-2%5C%5C-1%26amp%3B-6%26amp%3B2%5Cend%7Barray%7D%5Cright%5D+)
---------------------------------------------------------------------
C)
A matriz adjunta é a transposta da matriz cofatora...
Então:
![\\ Adj_{M} = (Cof_{M} )^T
\\
\\ Adj_{M} = \left[\begin{array}{ccc}2&6&-2\\1&8&-2\\-1&-6&2\end{array}\right] ^T
\\
\\
\\ Adj_{M} = \left[\begin{array}{ccc}2&1&-1\\6&8&-6\\-2&-2&2\end{array}\right]
\\ Adj_{M} = (Cof_{M} )^T
\\
\\ Adj_{M} = \left[\begin{array}{ccc}2&6&-2\\1&8&-2\\-1&-6&2\end{array}\right] ^T
\\
\\
\\ Adj_{M} = \left[\begin{array}{ccc}2&1&-1\\6&8&-6\\-2&-2&2\end{array}\right]](https://tex.z-dn.net/?f=++%5C%5C+Adj_%7BM%7D++%3D++%28Cof_%7BM%7D+%29%5ET%0A+%5C%5C+%0A+%5C%5C+Adj_%7BM%7D+%3D+++%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26amp%3B6%26amp%3B-2%5C%5C1%26amp%3B8%26amp%3B-2%5C%5C-1%26amp%3B-6%26amp%3B2%5Cend%7Barray%7D%5Cright%5D+%5ET%0A+%5C%5C+%0A+%5C%5C+%0A+%5C%5C+Adj_%7BM%7D+%3D++%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26amp%3B1%26amp%3B-1%5C%5C6%26amp%3B8%26amp%3B-6%5C%5C-2%26amp%3B-2%26amp%3B2%5Cend%7Barray%7D%5Cright%5D+%0A)
------------------------------------------------------
A matriz inversa será a divisão da matriz adjunta de "M" pelo determinante de M
![\\ M^-^1 = \frac{ Adj_{M} }{D}
\\
\\
\\ M^-^1 = \frac{ \left[\begin{array}{ccc}2&1&-1\\6&8&-6\\-2&-2&2\end{array}\right] }{2}
\\
\\
\\ M^-^1 = \left[\begin{array}{ccc}1& \frac{1}{2} &- \frac{1}{2} \\3&4&-3\\-1&-1&1\end{array}\right] \\ M^-^1 = \frac{ Adj_{M} }{D}
\\
\\
\\ M^-^1 = \frac{ \left[\begin{array}{ccc}2&1&-1\\6&8&-6\\-2&-2&2\end{array}\right] }{2}
\\
\\
\\ M^-^1 = \left[\begin{array}{ccc}1& \frac{1}{2} &- \frac{1}{2} \\3&4&-3\\-1&-1&1\end{array}\right]](https://tex.z-dn.net/?f=+%5C%5C+M%5E-%5E1+%3D++%5Cfrac%7B+Adj_%7BM%7D+%7D%7BD%7D+%0A+%5C%5C+%0A+%5C%5C+%0A+%5C%5C+M%5E-%5E1+%3D++%5Cfrac%7B++%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26amp%3B1%26amp%3B-1%5C%5C6%26amp%3B8%26amp%3B-6%5C%5C-2%26amp%3B-2%26amp%3B2%5Cend%7Barray%7D%5Cright%5D+%7D%7B2%7D+%0A+%5C%5C+%0A+%5C%5C+%0A+%5C%5C+M%5E-%5E1+%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26amp%3B+%5Cfrac%7B1%7D%7B2%7D+%26amp%3B-+%5Cfrac%7B1%7D%7B2%7D+%5C%5C3%26amp%3B4%26amp%3B-3%5C%5C-1%26amp%3B-1%26amp%3B1%5Cend%7Barray%7D%5Cright%5D)
O determinante dessa matriz iremos calcular por "Sarrus"
--------------------------------------------------------
B)
A matriz das cofatoras será:
---------------------------------------------------------------------
C)
A matriz adjunta é a transposta da matriz cofatora...
Então:
------------------------------------------------------
A matriz inversa será a divisão da matriz adjunta de "M" pelo determinante de M
deividsilva784:
Muito obrigado! :-)
Perguntas interessantes